
Copyright © 2019-2020 by Syncplify, Inc. All Rights Reserved.

Syncplify.me AFT! Manual

Syncplify.me AFT! Manual

2 / 66

Table of contents

Introduction .. 4
Welcome .. 5

Getting Started ... 5
Getting help .. 5
How to run your aftJS scripts .. 5
Environment variables ... 8
The aftJS language ... 9
System requirements .. 9

aftJS extensions to JavaScript ... 9
aftJS specific types ... 9

Options (for ALL client objects) ... 9
Directory item .. 12

Client objects and functions .. 12
Sorting a directory list (for all client objects) ... 12
AWS S3 client object ... 13
Azure Blob Storage client object ... 14
Google Cloud Storage client object .. 15
SFTP client object ... 16
FTP(E/S) client object ... 17
Methods of all client objects ... 19

Foreword ... 19
Connect ... 19
Disconnect ... 19
Directory list ... 20
Directory list (recursive) ... 21
Search for files ... 22
Search for files (recursive) ... 23
File/directory existence and metadata .. 24
Make a directory .. 25
Rename a directory .. 26
Delete a directory .. 26
Delete a directory tree ... 27
Delete a file ... 27
Rename/move an object .. 28
Upload files .. 28
Upload file with path .. 29
Upload files recursively ... 29
Upload files with path recursively ... 30
Download files .. 30
Download files with path .. 31
Download files recursively .. 31
Download files with path recursively ... 32

Remote file system watcher .. 32
Create a remote file system watcher .. 32
Watch a directory for changes .. 33
Choose events to watch ... 34

Syncplify.me AFT! Manual

3 / 66

Delay notifications .. 35
Inclusion/exclusion filters .. 35
Start the remote watcher ... 36
Poll the remote watcher event queue ... 37

Local file system watcher .. 37
Create a local file system watcher .. 37
Watch a directory for changes .. 38
Choose events to watch ... 39
Delay notifications .. 40
Inclusion/exclusion filters .. 40
Start watching for events ... 41
Poll the file system event queue ... 42

Local file system functions .. 42
List a local directory ... 42
List a local directory (recursive) .. 43
Copy a local file .. 43
Move a local file ... 43
Delete a file .. 43
Securely erase a file ... 43
Create a directory .. 44
Delete a directory ... 44
Delete a directory tree ... 44
Read a text file ... 44
Write some text to file .. 44
Create a zip archive .. 45
Identify a file MIME-type .. 45

Web (HTTP/HTTPS) functions ... 47
Introduction to the HttpCli object ... 47
HttpCli configuration methods ... 48
HttpCli http/https verbs ... 49
HttpCli response object ... 50

AMQP message queue functions ... 52
AMQP version 0.9.1 and 1.0 .. 52
AMQP client object properties ... 53
Connecting to an AMQP message queue ... 53
Adding a queue to monitor ... 54
Processing incoming events/messages .. 54

Cloud and integration functions ... 55
Send to Slack (webhook) .. 55
Send SMS via Twilio .. 55

Email and communication functions ... 56
Send an email via SMTP ... 56

Process management .. 56
Run a process .. 56
Run a process asynchronously .. 56

Image management functions ... 57
Resize (resample) a JPEG ... 57
Resize (resample) a PNG .. 57
Extract JPEG metadata ... 57

Syncplify.me AFT! Manual

4 / 66

Extract PNG metadata .. 60
Miscellaneous functions and variables ... 60

Log a custom log line .. 60
Detect halt requests ... 60
Sleep (pause execution) ... 61
Get a secret ... 61
Extract file path .. 62
Extract file name .. 62
Extract file extension .. 62
Number to string (with padding) ... 63
Unique IDs (UUID) ... 63

Additional security functions .. 63
Generate a PGP key-pair .. 63
Encrypt a file with PGP ... 64
Decrypt a file with PGP ... 64

More (cool) stuff we baked into mftJS ... 64
Why adding 3rd party stuff? ... 64
How to "require" a Node.js/JavaScript module .. 65
The famous "underscore.js" library ... 65

Syncplify.me AFT! Manual

5 / 66

Welcome
Thank you for choosing Syncplify.me AFT!, the perfect solution to create your own, flexible, automated,
managed file transfer tasks.

With Syncplify.me AFT! you can:
· create source-code AFT tasks in aftJS which is an extended version of JavaScript specifically

designed by Syncplify for managed file transfer
· create visual AFT tasks by simply assembling "building blocks", to bring the power of AFT to people

who are not familiar with computer programming
· run your AFT tasks in various ways, including:

o invoking tasks from anywhere via our built-in REST API
o running tasks from the command-line
o running tasks by simply double clicking on script files
o scheduling tasks using the built-in scheduler
o scheduling tasks using your operating system's native scheduler/cron

· log every event in JSON-formatted log files for easy import and analysis in the most widespread log
analyzers (ex: LogRhythm, ManageEngine, SumoLogic, Loggly, ...)

· and so so much more...

Getting Started

Getting help
This Manual is the primary source of help and learning for Syncplify.me AFT!, but we also have hundreds of
articles in our online Knowledge Base. We strongly recommend to check/search the Knowledge Base
every time you have a residual doubt after reading the manual: chances are that the answer to your
question is already there waiting for you.

If the Manual and the Knowledge Base were still not enough, you can open a support ticket here.
Tickets can be opened in 2 categories:
1. to receive help and support, if you are an existing customer
2. to ask pre-sales questions, if you're planning on buying our product

How to run your aftJS scripts
Syncplify.me AFT! is very flexible, and allows you to run your scripts (AFT tasks) in several different ways,
so that you can run them interactively, or even automate their execution when necessary.

1. Run scripts from within the web interface

This is probably the most intuitive way to run your scripts. In the "Scripts" section of the web interface,
simply hit the "run" button next to the script you want to execute.

https://syngo.me/support
https://syngo.me/support
https://syngo.me/support

Syncplify.me AFT! Manual

6 / 66

2. Run scripts via REST API

Syncplify.me AFT! also allows you to run your scripts via REST API. To do so, first you have to create an
API Key, as shown in the picture here below.

Please keep in mind that it's highly recommended to limit each API Key you create with a "whitelist". A
whitelist is a list of IP addresses and networks from which such API Key will be accepted. If someone tries
to run a script using this API Key from a machine (remote IP address) that's not in the Key's whitelist, the

Syncplify.me AFT! Manual

7 / 66

script will not be executed. This provides an additional level of security and safety.

Once your API Key exists, then you can run your scripts by simply consuming the following REST API
endpoint (which is super easy to do in practically every modern development language and/or shell):

3. Run scripts interactively from the command prompt

From the command prompt (or even from the PowerShell) you can invoke the execution of a script that's
saved in a file very easily by using the "run" command built into AFT! itself, and the --file (or -f shorthand)
parameter, as shown in the picture here below.

This method is very useful also to schedule the execution of your scripts (saved as files) from the Windows
Scheduler (or cron in Linux).

4. Run scripts interactively by double-clicking on them

Since you can save scripts as normal plain text files, you can also run them by simply double-clicking on
them from within your operating system's window manager (Explorer in Windows, or GNOME/KDE/... in
Linux).

Syncplify.me AFT! Manual

8 / 66

Note: in Windows, if your file has a ".aftjs" extension it will be run and then the console it's been run into will
remain open for you to check the resulting log; if, on the other hand, the file has a ".aftxjs" extension, the
console window will be automatically closed after the script finishes running.

Environment variables
Most aspects of Syncplify.me AFT! can be managed and/or initialized by means of environment variables.
This is a "best practice" because environment variables are safe (secured by the operating system), don't
require to store values inside the executable's memory, and are compatible and supported by all operating
system, in all physical and virtual environments, including containers.

Here's a list of environment variables supported by Syncplify.me AFT!, together with their explanation:

SMAFT_EK: typically initialized by the software installer, this is a random string from which AFT! derives the
encryption key to encrypt its own configuration files. It's important to understand that if you need to move
an instance of AFT! from one machine to another, you'll also need to make sure both machines have this
environment variable set to the exact same string value, otherwise the destination machine won't be able to
read/access its configuration, and the software will not work.

SMAFT_BINDTO: this is the IP address AFT!'s HTTP server should bind to upon starting. If you don't
specify it, AFT! will bind to 127.0.0.1 by default, and therefore it will be only accessible from localhost.

SMAFT_PORT: this is the TCP port (1-65535) AFT!'s HTTP server will bind to upon starting. If you don't
specify it, AFT! will bind to port 44399.

SMAFT_CERT: this is the fully-qualified path to an X.509 certificate bundle file. This variable is optional. If
not defined, AFT! will use the default path, which is %COMMON_APP_DATA%
\Syncplify.me\AFTv1\certs\server.crt on Windows, or %
XDG_DATA_DIRS[0]%/Syncplify.me/AFTv1/certs/server.crt on Linux/POSIX.

SMAFT_KEY: this is the fully-qualified path to an X.509 certificate private key file. This variable is optional.
If not defined, AFT! will use the default path, which is %COMMON_APP_DATA%
\Syncplify.me\AFTv1\certs\server.key on Windows, or %
XDG_DATA_DIRS[0]%/Syncplify.me/AFTv1/certs/server.key on Linux/POSIX.

SMAFT_BODYLIMIT: this is the maximum incoming request size that AFT!'s built-in HTTP server will
accept; if not specified, the default value is 32M. This is a string value, composed of a numerical prefix
followed by a letter indicating the unit of measurement. Example: 32M means 32 MegaBytes. Allowed
post-fix letters are K for KiloBytes, M for MegaBytes, G for GigaBytes, T for TeraBytes, and P for

Syncplify.me AFT! Manual

9 / 66

PetaBytes.

SMAFT_RUNNERS: this is the maximum number of jobs/tasks that AFT! will execute concurrently... if you
start more than SMAFT_RUNNERS tasks, all tasks exceeding this number will be queued, and executed
later when one of the running tasks terminates and frees up system resources. This is an optional setting,
and its default value is 32. Please, also be aware of the fact that the free/evaluation edition of AFT! forces
this number to be always 1 (one) regardless of what you set in this environment variable.

The aftJS language
The aftJS language is like JavaScript, actually it is JavaScript, nearly 100% compatible with the ECMA5
specification, including strict mode and regular expressions, and with some ECMA6 functionality as
well. Furthermore, and more importantly, it has several additional functions and methods specifically
designed to develop Managed File Transfer scripts.

Caveats:
The only known caveat at this time is that WeakMap maintains "hard" references to its values. This means
if a value references a key in a WeakMap or a WeakMap itself, it will not be garbage-collected until the
WeakMap becomes unreferenced. To illustrate this, see the following script:

{

 var m = new WeakMap();

 var key = {};

 m.set(key, {key: key});

 // or m.set(key, key);

 key = undefined; // The value will NOT become garbage-collectable at this

point

 m = undefined; // But it will at this point

}

System requirements

Supported operating systems

· Windows: all versions from XP through Windows 10, including Windows Server and all R2 versions
· Linux: tested on Ubuntu, CentOS, RedHat, Debian (should work on other distributions as well) on both

x86 and Arm architectures
· MacOSX: coming soon
· Containers: Docker image coming soon

Minimum hardware requirements

· RAM: 512 MB
· Free disk space: 40 MB
· CPU cores: 1+

Options (for ALL client objects)

Options = {

 StopOnTransferError // boolean

 DownloadPolicy // enum: NeverOverwrite, AlwaysOverwrite,

OverwriteIfDiffSize, OverwriteIfNewer

 UploadPolicy // enum: NeverOverwrite, AlwaysOverwrite,

OverwriteIfDiffSize, OverwriteIfNewer

 OnDownloadGrantTo // string (username of a user to whom AFT! will

grant access to downloaded file(s)

 AdjustTimeOnDownload // bool

Syncplify.me AFT! Manual

10 / 66

 AdjustTimeOnUpload // bool

 DownloadWithTempName // bool

 UploadWithTempName // bool

 DeleteSourceAfterDownload // bool

 DeleteSourceAfterUpload // bool

 VersionedDownload // bool

 VersionedUpload // bool

 VersionsToKeepLocal // integer - default: 3

 VersionsToKeepRemote // integer - default: 3

 OTFE // bool

 OTFEKey // string

 OTFEKeyFromSecret // string

}

Every client object, regardless of the file transfer protocol it implements, will have an Options property
like the one described here above.
Here below you can find an explanation of what each one of such options means.

StopOnTransferError: if true, any upload or download operation will immediately terminate if a file
transfer error occurs, otherwise (if false) Syncplify.me AFT! will try to keep uploading/downloading the
remaining queued files; this property defaults to false.

DownloadPolicy is the policy that the client object will apply to all downloads, and specifically:
· NeverOverwrite: if a file with the same name already exists on the local file system, it will not be

downloaded (this is the default value)
· AlwaysOverwrite: all files will always be downloaded, even if it means that local files are going to

be overwritten
· OverwriteIfDiffSize: if a local file with the same name exists, the remote file will be downloaded

(overwriting the local one) only if the size is different
· OverwriteIfNewer: if a local file with the same name exists, the remote file will be downloaded

(overwriting the local one) only if the remote file is more recent (looking at the last modification date)

UploadPolicy is the policy that the client object will apply to all uploads, and specifically:
· NeverOverwrite: if a file with the same name already exists on the remote file server, it will not be

uploaded (this is the default value)
· AlwaysOverwrite: all files will always be uploaded, even if it means that remote files are going to

be overwritten
· OverwriteIfDiffSize: if a remote file with the same name exists, the local file will be uploaded

(overwriting the remote one) only if the size is different
· OverwriteIfNewer: if a remote file with the same name exists, the local file will be uploaded

(overwriting the remote one) only if the local file is more recent (looking at the last modification date)

OnDownloadGrantTo: when AFT! is running as a system service, all downloaded files will be owned by
"System" (on Windows) or "root" (on Linux/POSIX systems). If you specify this option, then AFT! will grant
access (in Windows) or ownership (in Linux/POSIX) to all downloaded files to the username specified by
this option.

AdjustTimeOnDownload: if true, the last modification time of each downloaded file will be adjusted to
match the last modification time of the original file on the remote file server; this property defaults to true.

AdjustTimeOnUpload: if true, the last modification time of each uploaded file will be adjusted to match
the last modification time of the original file on the local file system; this property defaults to true.

DownloadWithTempName: if true, all downloads will be operated using a temporary file, and only after
a successful and complete download the temporary file will be renamed to the actual original name of the
downloaded file. This property defaults to false.

UploadWithTempName: if true, all uploads will be operated using a temporary file, and only after a
successful and complete upload the temporary file will be renamed to the actual original name of the

Syncplify.me AFT! Manual

11 / 66

uploaded file. This property defaults to false.

DeleteSourceAfterDownload: if true, after a file has been successfully downloaded, the original file
(on the remote file server) is deleted, effectively turning the download into a "file move" operation from the
remote to the local side.

DeleteSourceAfterUpload: if true, after a file has been successfully uploaded, the original file (on
the local file-system) is deleted, effectively turning the upload into a "file move" operation from the local to
the remote side.

VersionedDownload: if true, and if the other options require the destination local file to be overwritten
by the one that's being downloaded, this option instructs AFT! to automatically keep the old version of the
same file in a ".ver" sub-directory of the current local directory. This property defaults to false.

VersionedUpload: if true, and if the other options require the destination remote file to be overwritten
by the one that's being uploaded, this option instructs AFT! to automatically keep the old version of the
same file in a ".ver" sub-directory of the current remote directory. This property defaults to false.

VersionsToKeepLocal: used in conjunction with VersionedDownload, this property indicates the
number of older versions of each file that AFT! will keep in the local ".ver" sub-directory. Defaults to 3.

VersionsToKeepRemote: used in conjunction with VersionedUpload, this property indicates the
number of older versions of each file that AFT! will keep in the remote ".ver" sub-directory. Defaults to
3.

OTFE: short for On-The-Fly-Encryption, this property indicated whether AFT! should encrypt files as they
are uploaded to a remote file server, and decrypt them as they are downloaded back to the local storage.
Defaults to false.

OTFEKey: a secret word, password or keyword, from which the encryption key will be derived, when the
OTFE property is set to true. Please do not type your passwords or encryption keys in clear! Use
GetSecret instead, or - even better - use the OTFEKeyFromSecret property here below.

OTFEKeyFromSecret: the name of a stored secret (read more about secrets) to be used as seed to
derive the encryption key to be used by the On-The-Fly-Encryption algorithm when the OTFE property is
set to true. If both the OTFEKeyFromSecret and OTFEKey properties are specified, the
OTFEKeyFromSecret property prevails.

Example:

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 scli.Options.UploadPolicy = NeverOverwrite;

 scli.Options.AdjustTimeOnUpload = false;

 scli.Options.StopOnTransferError = true;

 if (scli.Connect()) {

 // perform your file transfers...

 // ...

 // ...

 scli.Close();

 }

 scli = null

}

Syncplify.me AFT! Manual

12 / 66

Directory item

DirListItem = {

 Name // string, fully qualified path and file name (ex:

"/docs/resume.docx")

 Type // string "FILE" or "DIR"

 Size // number (64-bit integer)

 TimeStamp // timestamp of the item, in JavaScript "Date()" compatible format

}

Every call to a ListDir method of any AFT client object will produce an array as a result; each element
of such array is an object of DirListItem type.
Once a resulting array has been obtained, you can use the typical JavaScript ways to iterate over it, and
check the various property of each one of its items.

Example 1 (one way to iterate over a directory list, using a for cycle):

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 dirList = scli.ListDir('/docs');

 for (var i = 0; i < dirList.length; i++) {

 Log(dirList[i].Name);

 }

 scli.Close();

 }

 scli = null

}

Example 2 (a different way to iterate over a directory list, using forEach):

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 dirList = scli.ListDir('/docs');

 dirList.forEach(myFunction);

 function myFunction(item, index, array) {

 Log(item.Name + ' [' + item.Size + ' bytes] [' + item.Type + ']');

 }

 scli.Close();

 }

 scli = null

}

Sorting a directory list (for all client objects)

function SortDir(dirList, sortBy, direction);

This function sorts (re-orders) a directory list previously retrieved by either one of the following client object
methods (regardless of which client object has generated the list): ListDir, ListDirR, ListFiles,

Syncplify.me AFT! Manual

13 / 66

ListFilesR.

Here's an explanation of the parameters this function takes:
· dirList is a JavaScript array in which each item is of DirListItem type, typically this list is the result

of a call to a client method that retrieves a directory/file list, as explained here above
· sortBy is a string parameter and can be either one of the following:

o "name" sorts the list by file name
o "size" sorts the list by file size
o "time" sorts the list by the timestamp of each file

· direction is an optional parameter; it can be either Ascending or Descending. If this parameter
is not specified, Ascending will be assumed by default.

Example:

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 dirList = scli.ListDir('/docs', All);

 SortDir(dirList, "time", Descending); // sorts from newest to oldest item

 scli.Close();

 }

 scli = null

}

AWS S3 client object

S3Client() // object constructor

This function creates and returns a new S3Client object, which is the AFT object that implements and
carries out all file transfers and related operations using Amazon's S3 protocol.

Here's the protocol-specific properties that you may have to initialize/configure before calling the
.Connect() method:

Region string

Bucket string

APIKeyID string

APIKeySecret string

APIKeySecretFromSecret string

UseMetadataWhenListing bool

Region: this is the AWS region, as specified in AWS' own documentation. For example 'us-east-1'.

Bucket: this is the name of the S3 bucket that you have chosen and assigned to your bucket when you
have originally created it.

APIKeyID: this is the APIKeyID that you have generated in your AWS account to access this bucket.

APIKeySecret: every APIKeyID has a corresponding secret in your AWS account. This is such secret.
We do not recommend, though, that you write your secrets in clear in your script code, so either use the
GetSecret function to populate this value, or use the APIKeySecretFromSecret property here below
(better choice).

APIKeySecretFromSecret: if you have stored your APIKeySecret as aSyncplify.me AFT! secret
(read more about secrets) then you can set this property to the name of the secret in Syncplify.me AFT!'s

https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html

Syncplify.me AFT! Manual

14 / 66

database; this is the safest choice.

UseMetadataWhenListing: this property is by default set to false to optimize the speed of your
directory listing and file searching commands. Setting this property to true will slow down directory lists
and file searches by a remarkable factor, but it will - in turn - enable the acquisition of the object's
metadata, which include the correct TimeStamp of the last modification date of the object. Unfortunately S3
doesn't return such information in the normal directory list, so this option necessarily needs to be set to
true if your script is using the AdjustTimeOnUpload or AdjustTimeOnDownload options. This is the
only way to make sure that the returned TimeStamp matches the custom TimeStamp you set, and not the
timestamp that AWS arbitrarily assigns to the object.

Please, keep in mind that once created you (the programmer) have the responsibility of freeing the
memory allocated by the object at the end of its use. You can easily do so by simply setting the object to
null once you're done using it (as shown in the example below).

Example:

{

 var scli = new S3Client();

 scli.Region = 'us-east-1';

 scli.Bucket = 'yourbucketname';

 scli.APIKeyID = 'wvb8ye5485ye4y7585';

 scli.APIKeySecretFromSecret = 'your_aws_s3_secret_name';

 if (scli.Connect()) {

 // perform your file transfers...

 // ...

 // ...

 scli.Close();

 }

 scli = null

}

Azure Blob Storage client object

AzureClient() // object constructor

This function creates and returns a new AzureClient object, which is the AFT object that implements
and carries out all file transfers and related operations using Microsoft Azure Blob Storage protocol.

Here's the protocol-specific properties that you may have to initialize/configure before calling the
.Connect() method:

Container string

AccountName string

AccountKey string

AccountKeyFromSecret string

UseMetadataWhenListing bool

Container: this is the name of the Azure Blob container that you have chosen and assigned to your
container when you have originally created it (other cloud vendors call this "bucket" but in Azure's
terminology it's called "Container".

AccountName: this is the Account Name for this Azure Storage Account.

AccountKey: every AccountName has a corresponding secret AccountKey in your Azure account. This is
such key. We do not recommend, though, that you write your secrets in clear in your script code, so either
use the GetSecret function to populate this value, or use the AccountKeyFromSecret property here
below (better choice).

AccountKeyFromSecret: if you have stored your AccountKey as aSyncplify.me AFT! secret (read

Syncplify.me AFT! Manual

15 / 66

more about secrets) then you can set this property to the name of the secret in Syncplify.me AFT!'s
database; this is the safest choice.

UseMetadataWhenListing: this property is by default set to false to optimize the speed of your
directory listing and file searching commands. Setting this property to true will slow down directory lists
and file searches by a remarkable factor, but it will - in turn - enable the acquisition of the object's
metadata, which include the correct TimeStamp of the last modification date of the object. Unfortunately
Azure doesn't return such information in the normal directory list, so this option necessarily needs to be set
to true if your script is using the AdjustTimeOnUpload or AdjustTimeOnDownload options. This is
the only way to make sure that the returned TimeStamp matches the custom TimeStamp you set, and not
the timestamp that AWS arbitrarily assigns to the object.

Important note: as opposed to other cloud platforms, in Azure Blob Storage all folders are "virtual". They
exist only when there's at least one blob in them, and disappear by themselves when they're emptied. This
implies the following peculiarities in the AzureClient object behavior that differ from all other AFT! client
objects:
· MakeDir always succeeds (returns true) but truthfully it does absolutely nothing
· RenDir is not supported and always return false (a non-existent object cannot be renamed)

Please, keep in mind that once created you (the programmer) have the responsibility of freeing the
memory allocated by the object at the end of its use. You can easily do so by simply setting the object to
null once you're done using it (as shown in the example below).

Example:

{

 var cli = new AzureClient();

 cli.Container = 'yourblobcontainername';

 cli.AccountName = 'your_account_name';

 cli.AccountKeyFromSecret = 'your_secret_name';

 if (cli.Connect()) {

 // perform your file transfers...

 // ...

 // ...

 cli.Close();

 }

 cli = null

}

Google Cloud Storage client object

GCSClient() // object constructor

This function creates and returns a new GCSClient object, which is the AFT object that implements and
carries out all file transfers and related operations using Google Cloud Storage protocol.

Here's the protocol-specific properties that you may have to initialize/configure before calling the
.Connect() method:

Bucket string

CredentialsFile string //optional

UseMetadataWhenListing bool

Bucket: this is the name of the S3 bucket that you have chosen and assigned to your bucket when you
have originally created it.

CredentialsFile: unlike other cloud vendors, Google Cloud exports OAuth2 credentials as a JSON file
(read this: https://cloud.google.com/docs/authentication/getting-started). Once you have this JSON file, you
have 2 options:
1. either you specify its full path in this CredentialsFile property of the GCSClient object, or

https://cloud.google.com/docs/authentication/getting-started

Syncplify.me AFT! Manual

16 / 66

2. you export its path as an environment variable named GOOGLE_APPLICATION_CREDENTIALS (if
you choose this option #2 you don't need to specify the file's path in your script, in fact Syncplify.me
AFT! will detect it automatically from your environment variables

UseMetadataWhenListing: this property is by default set to false to optimize the speed of your
directory listing and file searching commands. Setting this property to true will slow down directory lists
and file searches by a remarkable factor, but it will - in turn - enable the acquisition of the object's
metadata, which include the correct TimeStamp of the last modification date of the object. Unfortunately
Azure doesn't return such information in the normal directory list, so this option necessarily needs to be set
to true if your script is using the AdjustTimeOnUpload or AdjustTimeOnDownload options. This is
the only way to make sure that the returned TimeStamp matches the custom TimeStamp you set, and not
the timestamp that AWS arbitrarily assigns to the object.

Please, keep in mind that once created you (the programmer) have the responsibility of freeing the
memory allocated by the object at the end of its use. You can easily do so by simply setting the object to
null once you're done using it (as shown in the example below).

Example (with explicit location of the credentials file):

{

 var cli = new GCSClient();

 cli.Bucket = 'yourbucketname';

 cli.CredentialsFile = 'C:\\MySecretFolder\\GoogleCloudCreds.json';

 if (cli.Connect()) {

 // perform your file transfers...

 // ...

 // ...

 cli.Close();

 }

 cli = null

}

Example (that assumes the existence of the GOOGLE_APPLICATION_CREDENTIALS environment
valiable):

{

 var cli = new GCSClient();

 cli.Bucket = 'yourbucketname';

 if (cli.Connect()) {

 // perform your file transfers...

 // ...

 // ...

 cli.Close();

 }

 cli = null

}

SFTP client object

SftpClient() // object constructor

This function creates and returns a new SftpClient object, which is the AFT object that implements and
carries out all file transfers and related operations using the SFTP protocol.

Here's the protocol-specific properties that you may have to initialize/configure before calling the
.Connect() method:

https://tools.ietf.org/html/draft-ietf-secsh-filexfer-13

Syncplify.me AFT! Manual

17 / 66

Host string

User string

Pass string

PassFromSecret string

KeyFile string

KeyFilePass string

KeyFileSecret string

Host: is the IP address or HostName and Port of the remote file server. Should always be specified in the
form IP:Port or Host:Port format. Examples: 192.168.2.23:22 or sftp.mycompany.com:22.

User: this is the username to access the remote server. If the server uses APIKey/APISecret instead of
Username/Password, this property will contain the APIKey.

Pass: this is the password to access the remote server. If the server uses APIKey/APISecret instead of
Username/Password, this property will contain the APISecret.

PassFromSecret: Syncplify.me AFT! allows you to store secrets (strings) in its encrypted database, so
you don't have to put them in clear in your scripts. If you have stored a host's password (or APISecret) as
an encrypted secret in Syncplify.me AFT! you can reference it via PassFromSecret to retrieve it at
runtime without typing it in plain-text in your script. Read more about secrets.

KeyFile: if you specify the fully qualified path to a file containing your private key (in RSA format) then the
client object will attempt PKI authentication. Leave this property empty/blank to authenticate via simple
username and password.

KeyFilePass: if you have specified a KeyFile, and if the KeyFile is password-protected (encrypted),
this is the password that's necessary to decrypt such file.

KeyFileSecret: if you have specified a KeyFile, and if the KeyFile is password-protected
(encrypted), this is the name of the secret object in Syncplify.me AFT!'s database that corresponds to the
KeyFile's password, so you don't have to type such password in clear in your script. Using "secrets" is
always the recommended method to specify passwords in Syncplify.me AFT! Read more about secrets.

Please, keep in mind that once created you (the programmer) have the responsibility of freeing the
memory allocated by the object at the end of its use. You can easily do so by simply setting the object to
null once you're done using it (as shown in the example below).

Example:

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 // perform your file transfers...

 // ...

 // ...

 scli.Close();

 }

 scli = null

}

FTP(E/S) client object

FtpsClient() // object constructor

This function creates and returns a new FtpsClient object, which is the AFT object that implements and
carries out all file transfers and related operations using the FTP (plain), FTPS (implicit SSL/TLS), and

Syncplify.me AFT! Manual

18 / 66

FTPES (explicit SSL/TLS) protocols.

Here's the protocol-specific properties that you may have to initialize/configure before calling the
.Connect() method:

Host string

User string

Pass string

PassFromSecret string

TLS TLSMode // TLSNone || TLSExplicit || TLSImplicit

TrustInsecureCerts boolean

Host: is the IP address or HostName and Port of the remote file server. Should always be specified in the
form IP:Port or Host:Port format. Examples: 192.168.2.23:21 or ftp.mycompany.com:21.

User: this is the username to access the remote server. If the server uses APIKey/APISecret instead of
Username/Password, this property will contain the APIKey.

Pass: this is the password to access the remote server. If the server uses APIKey/APISecret instead of
Username/Password, this property will contain the APISecret.

PassFromSecret: Syncplify.me AFT! allows you to store secrets (strings) in its encrypted database, so
you don't have to put them in clear in your scripts. If you have stored a host's password (or APISecret) as
an encrypted secret in Syncplify.me AFT! you can reference it via PassFromSecret to retrieve it at
runtime without typing it in plain-text in your script. Read more about secrets.

TLS: this indicates whether or not you wish this client object to use SSL/TLS network encryption, and how.
The possible values are:
· TLSNone: indicates that no encryption will be used, data will be transferred in clear (not

recommended)
· TLSExplicit: this is the most common mode, the client object connects in clear, and immediately

switches to TLS using the STARTTLS command (this is also the only TLS mode that's actually a
recognized standard)

· TLSImplicit: assumes that the FTP server is listening on a SSL/TLS socket, so the connection will
be established already encrypted (although this may sound more secure than TLSExplicit to the
untrained ear, it actually isn't even a recognized standard, but we do support it if you wish to use it)

TrustInsecureCerts: defaults to false, but you may set it to true if you want the client object to
accept TLS certificates from servers that can't be verified or that flat out fail verification; this is useful only
when you know for sure that the FTP server is using a self-signed or otherwise invalid certificate but you
are absolutely sure you can still trust it

Please, keep in mind that once created you (the programmer) have the responsibility of freeing the
memory allocated by the object at the end of its use. You can easily do so by simply setting the object to
null once you're done using it (as shown in the example below).

Syncplify.me AFT! Manual

19 / 66

Example:

{

 var cli = new FtpsClient();

 cli.Host = 'your.sftpserver.com:21';

 cli.User = 'someusername';

 cli.PassFromSecret = 'my_secret_name';

 cli.TLS = TLSExplicit;

 if (cli.Connect()) {

 // perform your file transfers...

 // ...

 // ...

 cli.Close();

 }

 cli = null

}

Foreword

All AFT client objects, regardless of the protocol they implement (SFTP, FTP, S3, GCP, ...) implement the
same file-transfer-specific methods, so you don't have to worry about learning tons of different methods
and function names, and how to use them. All client objects behave the same, and all of them share the
same method interfaces, to provide you with a consistent programming experience across all supported file
transfer protocols.

Connect

function Connect()

The Connect() function tries to connect and authenticate to the remote service.
If such connection and authentication are successful, this function returns true, otherwise it returns
false.

Example:

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 // perform your file transfers...

 // ...

 // ...

 scli.Close();

 }

 scli = null

}

Disconnect

function Close()

The Close() function of each AFT client object disconnects from the remote service.
If the disconnection was carried out gracefully, it returns true, otherwise if some errors occurred during
disconnection it returns false.

Syncplify.me AFT! Manual

20 / 66

Example:

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 // perform your file transfers...

 // ...

 // ...

 scli.Close();

 }

 scli = null

}

Directory list

function ListDir(directory, include)

The ListDir method retrieves the list of objects, typically files and other directories, contained inside the
specified directory.
The result of this function is returned as a JavaScript array of objects. Each object is of DirListItem
type.
Once a resulting array has been obtained, you can use the typical JavaScript ways to iterate over it, and
check the various property of each one of its items.

The include parameter is used to determine what the ListDir command should return, and can have
either one of the following 3 values:
· All: all files and sub-directories inside directory will be returned
· FilesOnly: only files contained inside directory will be returned
· DirsOnly: only sub-directories inside directory will be returned

This function is NOT recursive, so only items that are contained inside directory will be returned. Items
contained in sub-directories of directory will not be included in the results. For a recursive version of this
function, please, look at ListDirR.

Syncplify.me AFT! Manual

21 / 66

Example 1 (one way to iterate over a directory list, using a for cycle):

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 dirList = scli.ListDir('/docs', All);

 for (var i = 0; i < dirList.length; i++) {

 Log(dirList[i].Name);

 }

 scli.Close();

 }

 scli = null

}

Example 2 (a different way to iterate over a directory list, using forEach):

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 dirList = scli.ListDir('/docs', FilesOnly);

 dirList.forEach(myFunction);

 function myFunction(item, index, array) {

 Log(item.Name + ' [' + item.Size + ' bytes] [' + item.Type + ']');

 }

 scli.Close();

 }

 scli = null

}

Directory list (recursive)

function ListDirR(directory, include)

The ListDirR method retrieves the list of objects, typically files and other directories, contained inside
the specified directory, and all of its sub-directories.
The result of this function is returned as a JavaScript array of objects. Each object is of DirListItem
type.
Once a resulting array has been obtained, you can use the typical JavaScript ways to iterate over it, and
check the various property of each one of its items.

The include parameter is used to determine what the ListDirR command should return, and can have
either one of the following 3 values:
· All: all files and sub-directories inside directory (and inside its sub-directories) will be returned
· FilesOnly: only files contained inside directory (and inside its sub-directories)will be returned
· DirsOnly: only sub-directories inside directory (and inside its sub-directories)will be returned

This function is recursive, therefore it will return all matching items from directory as well as from all of
directory's sub-directories.

Syncplify.me AFT! Manual

22 / 66

Example 1 (one way to iterate over a directory list, using a for cycle):

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 dirList = scli.ListDirR('/docs', All);

 for (var i = 0; i < dirList.length; i++) {

 Log(dirList[i].Name);

 }

 scli.Close();

 }

 scli = null

}

Example 2 (a different way to iterate over a directory list, using forEach):

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 dirList = scli.ListDirR('/docs', FilesOnly);

 dirList.forEach(myFunction);

 function myFunction(item, index, array) {

 Log(item.Name + ' [' + item.Size + ' bytes] [' + item.Type + ']');

 }

 scli.Close();

 }

 scli = null

}

Search for files

function ListFiles(directory, mask)

The ListFiles method retrieves the list of files (not sub-directories) contained inside the specified
directory.
The result of this function is returned as a JavaScript array of objects. Each object is of DirListItem
type.
Once a resulting array has been obtained, you can use the typical JavaScript ways to iterate over it, and
check the various property of each one of its items.

The directory parameter must specify an existing directory.
The mask parameter must specify to file-mask to match while searching, wildcards are supported (for
example: *.docx).

This function is NOT recursive, so only files that are contained inside directory will be returned. Files
contained in sub-directories of directory will not be included in the results. For a recursive version of this
function, please, look at ListFilesR.

Syncplify.me AFT! Manual

23 / 66

Example 1 (one way to iterate over a directory list, using a for cycle):

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 dirList = scli.ListFiles('/docs', '*.docx');

 for (var i = 0; i < dirList.length; i++) {

 Log(dirList[i].Name);

 }

 scli.Close();

 }

 scli = null

}

Example 2 (a different way to iterate over a directory list, using forEach):

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 dirList = scli.ListFiles('/docs', '*.xlsx');

 dirList.forEach(myFunction);

 function myFunction(item, index, array) {

 Log(item.Name + ' [' + item.Size + ' bytes] [' + item.Type + ']');

 }

 scli.Close();

 }

 scli = null

}

Search for files (recursive)

function ListFilesR(directory, mask)

The ListFilesR method retrieves the list of files (not sub-directories) contained inside the specified
directory and all of its sub-directories.
The result of this function is returned as a JavaScript array of objects. Each object is of DirListItem
type.
Once a resulting array has been obtained, you can use the typical JavaScript ways to iterate over it, and
check the various property of each one of its items.

The directory parameter must specify an existing directory.
The mask parameter must specify to file-mask to match while searching, wildcards are supported (for
example: *.docx).

This function is recursive, therefore it will return all matching files from directory as well as from all of
directory's sub-directories.

Syncplify.me AFT! Manual

24 / 66

Example 1 (one way to iterate over a directory list, using a for cycle):

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 dirList = scli.ListFilesR('/docs', '*.docx');

 for (var i = 0; i < dirList.length; i++) {

 Log(dirList[i].Name);

 }

 scli.Close();

 }

 scli = null

}

Example 2 (a different way to iterate over a directory list, using forEach):

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 dirList = scli.ListFilesR('/docs', '*.xlsx');

 dirList.forEach(myFunction);

 function myFunction(item, index, array) {

 Log(item.Name + ' [' + item.Size + ' bytes] [' + item.Type + ']');

 }

 scli.Close();

 }

 scli = null

}

File/directory existence and metadata

function Stat(remoteObj)

Every client object has a method called Stat which tries to retrieve information about a remote object (file
or directory) and, in doing so, checks whether such object exists or not.

This method always returns an object with the following structure:

{

 Valid bool

 Exists bool

 Stat DirListItem

}

Here's an example of a fully populated object of the above type.

{

 Valid : true,

 Exists : true,

 Stat : {

Syncplify.me AFT! Manual

25 / 66

 Name: "/docs/budget.xlsx",

 Type: "FILE",

 Size: 526546,

 TimeStamp: 1576095950

 }

}

Valid is true when the .Stat command has returned valid information. Does not necessarily mean that
the object exists, only that the command was executed without issues.

Exists is true if remoteObj (a file or directory on the remote file server) exists.

If and only if Exists is true, then the object's Stat property will contain meaningful information about
the analyzed file/directory.

Example:

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 // perform your file transfers...

 // ...

 var res = scli.Stat('');

 if ((res.Valid) && (res.Exists)) {

 Log('The file exists and its size is '+res.Stat.Size);

 }

 // ...

 scli.Close();

 }

 scli = null

}

Make a directory

function MakeDir(directory)

The MakeDir function creates a directory. It also creates, if needed, all directories in the path into which
the leaf directory is in. Suppose, for example, that a "docs" directory exists in the root of the remote file
server, and you MakeDir('/docs/personal/spreadsheets'), the MakeDir function will proceed to
create the "personal" directory inside the "docs" directory, and then the "spreadsheets" directory inside the
"personal" directory, all with a single function call.

Syncplify.me AFT! Manual

26 / 66

Example:

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 // perform your file transfers...

 // ...

 scli.MakeDir('/docs/personal/spreadsheets');

 // ...

 scli.Close();

 }

 scli = null

}

Rename a directory

function RenDir(currentDirName, newDirName)

The RenDir function renames a directory. The currentDirName directory must exist, and the
newDirName directory must not exist, otherwise this command will fail and return false. If the command
succeeds, and the directory is successfully renamed, then this function will return true.

Example:

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 // perform your file transfers...

 // ...

 scli.RenDir('/docs/yours', '/docs/mine');

 // ...

 scli.Close();

 }

 scli = null

}

Delete a directory

function DelDir(directory)

The DelDir function deletes a directory, if it's empty.
This function returns true if the directory was successfully deleted. If the directory isn't empty, or if for
any other reason it could not be deleted, this function returns false.

Syncplify.me AFT! Manual

27 / 66

Example:

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 // perform your file transfers...

 // ...

 scli.DelDir('/docs/some_empty_directory');

 // ...

 scli.Close();

 }

 scli = null

}

Delete a directory tree

function DelTree(directory)

The DelTree function deletes a directory tree, by recursively deleting also all files and sub-directories in
it.
This function returns true if the directory tree was successfully deleted. If for any other reason it could not
be deleted, this function returns false.

Example:

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 // perform your file transfers...

 // ...

 scli.DelTree('/docs/some_directory');

 // ...

 scli.Close();

 }

 scli = null

}

Delete a file

function Delete(what)

The Delete method attempts to delete a file from the remote server, and returns true if deletion was
successful or false if it wasn't.

Syncplify.me AFT! Manual

28 / 66

Example:

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 // perform your file transfers...

 // ...

 scli.Delete('/docs/some_document.docx');

 // ...

 scli.Close();

 }

 scli = null

}

Rename/move an object

function Rename(what, toWhere)

The Rename function renames or moves a file system object (file or folder) on the remote file server. It
returns true if the object is successfully renamed/moved, otherwise it returns false.

Example:

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 // perform your file transfers...

 // ...

 scli.Rename('/docs/bio.docx', '/docs/bio.docx.bak');

 // ...

 scli.Close();

 }

 scli = null

}

Upload files

function Upload(what, toWhere)

The Upload function upload the file(s) specified in the what parameter (supports wildcards) to the
toWhere destination directory on the remote file server. This function is NOT recursive, therefore when
using wildcards, this function will NOT upload matching files from sub-directories of the directory specified
in the what parameter. For a recursive version of this function see the UploadR function.

Syncplify.me AFT! Manual

29 / 66

Example:

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 // perform your file transfers...

 // ...

 scli.Upload('./docs/*.docx', '/archive/docs');

 // ...

 scli.Close();

 }

 scli = null

}

Upload file with path

function UploadWithPath(what, toWhere, skip)

The UploadWithPath function upload the file(s) specified in the what parameter (supports wildcards) to
the toWhere destination directory on the remote file server, retaining the path of the original file and
recreating it if necessary. The skip parameter is an integer number that instructs the function to skip the
first N directories of the original path when rebuilding it into the destination path. This function is NOT
recursive, therefore when using wildcards, this function will NOT upload matching files from sub-directories
of the directory specified in the what parameter. For a recursive version of this function see the
UploadWithPathR function.

Example:

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 // perform your file transfers...

 // ...

 scli.UploadWithPath('./data/docs/*.docx', '/archive', 0); // uploads files

to /archive/data/docs

 // ...

 scli.UploadWithPath('./data/docs/*.docx', '/archive', 1); // skip=1 means

uploads files to /archive/docs

 // ...

 scli.Close();

 }

 scli = null

}

Upload files recursively

function UploadR(what, toWhere)

The UploadR function upload the file(s) specified in the what parameter (supports wildcards) to the
toWhere destination directory on the remote file server. This function is recursive, therefore when using
wildcards, this function will also upload all matching files from sub-directories of the directory specified in

Syncplify.me AFT! Manual

30 / 66

the what parameter.

Example:

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 // perform your file transfers...

 // ...

 scli.UploadR('./docs/*.docx', '/archive/docs');

 // ...

 scli.Close();

 }

 scli = null

}

Upload files with path recursively

function UploadWithPathR(what, toWhere, skip)

The UploadWithPathR function upload the file(s) specified in the what parameter (supports wildcards)
to the toWhere destination directory on the remote file server, retaining the path of the original file and
recreating it if necessary. The skip parameter is an integer number that instructs the function to skip the
first N directories of the original path when rebuilding it into the destination path. This function is recursive,
therefore when using wildcards, this function will also upload all matching files from sub-directories of the
directory specified in the what parameter.

Example:

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 // perform your file transfers...

 // ...

 scli.UploadWithPathR('./data/docs/*.docx', '/archive', 0); // uploads files

to /archive/data/docs and subfolders

 // ...

 scli.UploadWithPathR('./data/docs/*.docx', '/archive', 1); // skip=1 means

uploads files to /archive/docs and subfolders

 // ...

 scli.Close();

 }

 scli = null

}

Download files

function Download(what, toWhere)

The Download function download the file(s) specified in the what parameter (supports wildcards) from
the remote file server to the toWhere destination directory on the local file system. This function is NOT

Syncplify.me AFT! Manual

31 / 66

recursive, therefore when using wildcards, this function will NOT download matching files from sub-
directories of the directory specified in the what parameter. For a recursive version of this function see the
DownloadR function.

Example:

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 // perform your file transfers...

 // ...

 scli.Download('/archive/docs/*.docx', './docs');

 // ...

 scli.Close();

 }

 scli = null

}

Download files with path

function DownloadWithPath(what, toWhere)

The DownloadWithPath function download the file(s) specified in the what parameter (supports
wildcards) from the remote file server to the toWhere destination directory on the local file system,
retaining the path of the original file and recreating it if necessary. The skip parameter is an integer
number that instructs the function to skip the first N directories of the original remote path when rebuilding it
into the local destination path. This function is NOT recursive, therefore when using wildcards, this function
will NOT download matching files from sub-directories of the directory specified in the what parameter.
For a recursive version of this function see the DownloadWithPathR function.

Example:

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 // perform your file transfers...

 // ...

 scli.DownloadWithPath('/arc/docs/*.docx', './here', 0); // downloads files

to ./here/arc/docs

 // ...

 scli.DownloadWithPath('/arc/docs/*.docx', './here', 1); // skip=1 downloads

files to ./here/docs

 // ...

 scli.Close();

 }

 scli = null

}

Download files recursively

function DownloadR(what, toWhere)

The DownloadR function download the file(s) specified in the what parameter (supports wildcards) from
the remote file server to the toWhere destination directory on the local file system. This function is

Syncplify.me AFT! Manual

32 / 66

recursive, therefore when using wildcards, this function will also download matching files from sub-
directories of the directory specified in the what parameter.

Example:

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 // perform your file transfers...

 // ...

 scli.DownloadR('/archive/docs/*.docx', './docs');

 // ...

 scli.Close();

 }

 scli = null

}

Download files with path recursively

function DownloadWithPathR(what, toWhere)

The DownloadWithPathR function download the file(s) specified in the what parameter (supports
wildcards) from the remote file server to the toWhere destination directory on the local file system,
retaining the path of the original file and recreating it if necessary. The skip parameter is an integer
number that instructs the function to skip the first N directories of the original remote path when rebuilding it
into the local destination path. This function is recursive, therefore when using wildcards, this function will
also download matching files from sub-directories of the directory specified in the what parameter.

Example:

{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.KeyFile = './my_id.rsa';

 if (scli.Connect()) {

 // perform your file transfers...

 // ...

 scli.DownloadWithPathR('/arc/docs/*.docx', './here', 0); // downloads files

to ./here/arc/docs and subfolders

 // ...

 scli.DownloadWithPathR('/arc/docs/*.docx', './here', 1); // skip=1 downloads

files to ./here/docs and subfolders

 // ...

 scli.Close();

 }

 scli = null

}

Create a remote file system watcher

RemoteWatcher(clientObject) // object constructor

This function creates and returns a new Remote Watcher object using the specified client object remote
connection. This object can be used later in the script to be constantly notified of the desired changes to
the observed (watched) directory/folder (and optionally its sub-folders) on the remote file server.

Syncplify.me AFT! Manual

33 / 66

Example:

{

 ConsoleFeedback = true;

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'some_username';

 scli.PassFromSecret = 'name_of_the_secret_password';

 if (scli.Connect()) {

 watchr = new RemoteWatcher(scli);

 watchr.WatchDir('/Docs', true);

 watchr.NotifyRemove = false;

 watchr.InclusionFilter = ['*.docx', '*.xlsx']

 watchr.ExclusionFilter = ['some_private_document.docx']

 watchr.Start();

 while (true) {

 Sleep(30000);

 if (HaltSignalReceived()) {

 break;

 }

 evt = watchr.Events()

 if (evt.length > 0) {

 for (var i = 0; i < evt.length; i++) {

 if (evt[i].Event == 'CREATE') {

 scli.DownloadWithPath(evt[i].Object, 'C:\\MyLocalCopies', 0);

 }

 }

 }

 }

 scli.Close();

 }

 scli = null;

}

Watch a directory for changes

function WatchDir(path, recursive)

This RemoteWatcher method adds a directory/folder to the list of directories/folders "watched" by the file
system watcher.
The path parameter is a string, and specifies a directory to be watched.
The recursive parameter is a boolean, and specifies whether or not the RemoteWatcher should also watch
all sub-folders of the specified folder.

Example:

{

 ConsoleFeedback = true;

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'some_username';

 scli.PassFromSecret = 'name_of_the_secret_password';

 if (scli.Connect()) {

 watchr = new RemoteWatcher(scli);

 watchr.WatchDir('/Docs', true);

 watchr.NotifyRemove = false;

 watchr.InclusionFilter = ['*.docx', '*.xlsx']

 watchr.ExclusionFilter = ['some_private_document.docx']

 watchr.Start();

 while (true) {

Syncplify.me AFT! Manual

34 / 66

 Sleep(30000);

 if (HaltSignalReceived()) {

 break;

 }

 evt = watchr.Events()

 if (evt.length > 0) {

 for (var i = 0; i < evt.length; i++) {

 if (evt[i].Event == 'CREATE') {

 scli.DownloadWithPath(evt[i].Object, 'C:\\MyLocalCopies', 0);

 }

 }

 }

 }

 scli.Close();

 }

 scli = null;

}

Choose events to watch

.NotifyCreate // boolean - default: true - triggered when an object is created

.NotifyRemove // boolean - default: true - triggered when an object is removed

.NotifyModify // boolean - default: true - triggered when an object is

modified

These 3 properties of the RemoteWatcher object determine which remote file-system events will be
included in the watcher's notifications and which ones won't. By default they are all set to true, so unless
you want to disable some of them, you don't need to set/reset them in your code.

Example:

{

 ConsoleFeedback = true;

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'some_username';

 scli.PassFromSecret = 'name_of_the_secret_password';

 if (scli.Connect()) {

 watchr = new RemoteWatcher(scli);

 watchr.WatchDir('/Docs', true);

 watchr.NotifyRemove = false;

 watchr.InclusionFilter = ['*.docx', '*.xlsx']

 watchr.ExclusionFilter = ['some_private_document.docx']

 watchr.Start();

 while (true) {

 Sleep(30000);

 if (HaltSignalReceived()) {

 break;

 }

 evt = watchr.Events()

 if (evt.length > 0) {

 for (var i = 0; i < evt.length; i++) {

 if (evt[i].Event == 'CREATE') {

 scli.DownloadWithPath(evt[i].Object, 'C:\\MyLocalCopies', 0);

 }

 }

 }

 }

 scli.Close();

 }

 scli = null;

}

Syncplify.me AFT! Manual

35 / 66

Delay notifications

.DelayBySeconds // integer number

This property of the RemoteWatcher object causes a delay of the specified number of seconds to all file-
system event notifications. This can be extremely useful to allow the OS enough time to complete file
operations before the RemoteWatcher notifies our script and triggers the execution of a file transfer
operation, for example.

Example:

{

 ConsoleFeedback = true;

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'some_username';

 scli.PassFromSecret = 'name_of_the_secret_password';

 if (scli.Connect()) {

 watchr = new RemoteWatcher(scli);

 watchr.WatchDir('/Docs', true);

 watchr.DelayBySeconds = 25;

 watchr.InclusionFilter = ['*.docx', '*.xlsx']

 watchr.ExclusionFilter = ['some_private_document.docx']

 watchr.Start();

 while (true) {

 Sleep(30000);

 if (HaltSignalReceived()) {

 break;

 }

 evt = watchr.Events()

 if (evt.length > 0) {

 for (var i = 0; i < evt.length; i++) {

 if (evt[i].Event == 'CREATE') {

 scli.DownloadWithPath(evt[i].Object, 'C:\\MyLocalCopies', 0);

 }

 }

 }

 }

 scli.Close();

 }

 scli = null;

}

Inclusion/exclusion filters

.InclusionFilter // array of strings

.ExclusionFilter // array of strings

These two properties instruct the RemoteWatcher to include or exclude specific file-masks.
By default, InclusionFilter is ['*'], so it includes everything, and ExclusionFilter is empty, so
nothing will be excluded.

Example:

{

 ConsoleFeedback = true;

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'some_username';

Syncplify.me AFT! Manual

36 / 66

 scli.PassFromSecret = 'name_of_the_secret_password';

 if (scli.Connect()) {

 watchr = new RemoteWatcher(scli);

 watchr.WatchDir('/Docs', true);

 watchr.DelayBySeconds = 25;

 watchr.InclusionFilter = ['*.docx', '*.xlsx']

 watchr.ExclusionFilter = ['some_private_document.docx']

 watchr.Start();

 while (true) {

 Sleep(30000);

 if (HaltSignalReceived()) {

 break;

 }

 evt = watchr.Events()

 if (evt.length > 0) {

 for (var i = 0; i < evt.length; i++) {

 if (evt[i].Event == 'CREATE') {

 scli.DownloadWithPath(evt[i].Object, 'C:\\MyLocalCopies', 0);

 }

 }

 }

 }

 scli.Close();

 }

 scli = null;

}

Start the remote watcher

function Start()

This RemoteWatcher method triggers the asynchronous execution of the underlying remote file-system
watcher, so that your script can subsequently poll it for pending events. No notification will be available to
the script prior to calling this method.

Example:

{

 ConsoleFeedback = true;

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'some_username';

 scli.PassFromSecret = 'name_of_the_secret_password';

 if (scli.Connect()) {

 watchr = new RemoteWatcher(scli);

 watchr.WatchDir('/Docs', true);

 watchr.DelayBySeconds = 25;

 watchr.InclusionFilter = ['*.docx', '*.xlsx']

 watchr.ExclusionFilter = ['some_private_document.docx']

 watchr.Start();

 while (true) {

 Sleep(30000);

 if (HaltSignalReceived()) {

 break;

 }

 evt = watchr.Events()

 if (evt.length > 0) {

 for (var i = 0; i < evt.length; i++) {

 if (evt[i].Event == 'CREATE') {

 scli.DownloadWithPath(evt[i].Object, 'C:\\MyLocalCopies', 0);

 }

 }

Syncplify.me AFT! Manual

37 / 66

 }

 }

 scli.Close();

 }

 scli = null;

}

Poll the remote watcher event queue

function Events() // returns an array of event objects

Each event object is defined as follows:
TimeStamp JSTime // timestamp of when the event happened (in JavaScript Date()

compatible format)

Event string // file system event as string: CREATE, REMOVE, MODIFY

Object string // the remote object (file or directory) affected by Event

This FsWatcher method is designed to be called within the scope of an endless loop, to keep the script
running forever (unless terminated by an admin or an OS signal). Each time this method is called, it returns
an array of pending, to-be-handled, file system notifications. Every call to this method will also clear the
pending notifications, so all events that are left un-handled will not be notified again.

Example:

{

 ConsoleFeedback = true;

 var scli = new SftpClient(scli);

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'some_username';

 scli.PassFromSecret = 'name_of_the_secret_password';

 if (scli.Connect()) {

 watchr = new RemoteWatcher();

 watchr.WatchDir('/Docs', true);

 watchr.DelayBySeconds = 25;

 watchr.InclusionFilter = ['*.docx', '*.xlsx']

 watchr.ExclusionFilter = ['some_private_document.docx']

 watchr.Start();

 while (true) {

 Sleep(30000);

 if (HaltSignalReceived()) {

 break;

 }

 evt = watchr.Events()

 if (evt.length > 0) {

 for (var i = 0; i < evt.length; i++) {

 if (evt[i].Event == 'CREATE') {

 scli.DownloadWithPath(evt[i].Object, 'C:\\MyLocalCopies', 0);

 }

 }

 }

 }

 scli.Close();

 }

 scli = null;

}

Create a local file system watcher

FsWatcher() // object constructor

This function creates and returns a new File-System Watcher object. This object can be used later in the
script to be constantly notified of the desired changes to the observed (watched) directory/folder, and

Syncplify.me AFT! Manual

38 / 66

optionally its sub-folders.

Example:

{

 ConsoleFeedback = true;

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'some_username';

 scli.PassFromSecret = 'name_of_the_secret_password';

 if (scli.Connect()) {

 watchr = new FsWatcher();

 watchr.WatchDir('C:\\Docs', true);

 watchr.NotifyRename = false;

 watchr.InclusionFilter = ['*.docx', '*.xlsx']

 watchr.ExclusionFilter = ['some_private_document.docx']

 watchr.Start();

 while (true) {

 Sleep(1000);

 if (HaltSignalReceived()) {

 break;

 }

 evt = watchr.Events()

 if (evt.length > 0) {

 for (var i = 0; i < evt.length; i++) {

 if (evt[i].Event == 'WRITE') {

 scli.UploadWithPath(evt[i].Object, '/realtimebackup', 0);

 }

 }

 }

 }

 scli.Close();

 }

 scli = null;

}

Watch a directory for changes

function WatchDir(path, recursive)

This FsWatcher method adds a directory/folder to the list of directories/folders "watched" by the file
system watcher.
The path parameter is a string, and specifies a directory to be watched.
The recursive parameter is a boolean, and specifies whether or not the FsWatcher should also watch all
sub-folders of the specified folder.

Example:

{

 ConsoleFeedback = true;

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'some_username';

 scli.PassFromSecret = 'name_of_the_secret_password';

 if (scli.Connect()) {

 watchr = new FsWatcher();

 watchr.WatchDir('C:\\Docs', true);

 watchr.NotifyRename = false;

 watchr.InclusionFilter = ['*.docx', '*.xlsx']

 watchr.ExclusionFilter = ['some_private_document.docx']

Syncplify.me AFT! Manual

39 / 66

 watchr.Start();

 while (true) {

 Sleep(1000);

 if (HaltSignalReceived()) {

 break;

 }

 evt = watchr.Events()

 if (evt.length > 0) {

 for (var i = 0; i < evt.length; i++) {

 if (evt[i].Event == 'WRITE') {

 scli.UploadWithPath(evt[i].Object, '/realtimebackup', 0);

 }

 }

 }

 }

 scli.Close();

 }

 scli = null;

}

Choose events to watch

.NotifyCreate // boolean - default: true - triggered when an object is created

.NotifyWrite // boolean - default: true - triggered when an object is written

.NotifyRemove // boolean - default: true - triggered when an object is removed

.NotifyRename // boolean - default: true - triggered when an object is renamed

.NotifyChmod // boolean - default: true - triggered when an object's metadata

is changed

These 5 properties of the FsWatcher object determine which file system events will be included in the
watcher's notifications and which ones won't. By default they are all set to true, so unless you want to
disable some of them, you don't need to set/reset them in your code.

Example:

{

 ConsoleFeedback = true;

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'some_username';

 scli.PassFromSecret = 'name_of_the_secret_password';

 if (scli.Connect()) {

 watchr = new FsWatcher();

 watchr.WatchDir('C:\\Docs', true);

 watchr.NotifyRename = false; // will NOT notify File-Rename events

 watchr.InclusionFilter = ['*.docx', '*.xlsx']

 watchr.ExclusionFilter = ['some_private_document.docx']

 watchr.Start();

 while (true) {

 Sleep(1000);

 if (HaltSignalReceived()) {

 break;

 }

 evt = watchr.Events()

 if (evt.length > 0) {

 for (var i = 0; i < evt.length; i++) {

 if (evt[i].Event == 'WRITE') {

 scli.UploadWithPath(evt[i].Object, '/realtimebackup', 0);

 }

 }

 }

 }

Syncplify.me AFT! Manual

40 / 66

 scli.Close();

 }

 scli = null;

}

Delay notifications

.DelayBySeconds // integer number

This property of the FsWatcher object causes a delay of the specified number of seconds to all file-system
event notifications. This can be extremely useful to allow the OS enough time to complete file operations
before the FsWatcher notifies our script and triggers the execution of a file transfer operation, for example.

Example:

{

 ConsoleFeedback = true;

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'some_username';

 scli.PassFromSecret = 'name_of_the_secret_password';

 if (scli.Connect()) {

 watchr = new FsWatcher();

 watchr.WatchDir('C:\\Docs', true);

 watchr.DelayBySeconds = 10 // delay all notifications by 10 seconds

 watchr.InclusionFilter = ['*.docx', '*.xlsx']

 watchr.ExclusionFilter = ['some_private_document.docx']

 watchr.Start();

 while (true) {

 Sleep(1000);

 if (HaltSignalReceived()) {

 break;

 }

 evt = watchr.Events()

 if (evt.length > 0) {

 for (var i = 0; i < evt.length; i++) {

 if (evt[i].Event == 'WRITE') {

 scli.UploadWithPath(evt[i].Object, '/realtimebackup', 0);

 }

 }

 }

 }

 scli.Close();

 }

 scli = null;

}

Inclusion/exclusion filters

.InclusionFilter // array of strings

.ExclusionFilter // array of strings

These two properties instruct the FsWatcher to include or exclude specific file-masks.
By default, InclusionFilter is ['*'], so it includes everything, and ExclusionFilter is empty, so
nothing will be excluded.

Example:

{

 ConsoleFeedback = true;

Syncplify.me AFT! Manual

41 / 66

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'some_username';

 scli.PassFromSecret = 'name_of_the_secret_password';

 if (scli.Connect()) {

 watchr = new FsWatcher();

 watchr.WatchDir('C:\\Docs', true);

 watchr.InclusionFilter = ['*.docx', '*.xlsx'] // include only *.docx and

*.xlsx files

 watchr.ExclusionFilter = ['some_private_document.docx'] // exclude this one

specific file

 watchr.Start();

 while (true) {

 Sleep(1000);

 if (HaltSignalReceived()) {

 break;

 }

 evt = watchr.Events()

 if (evt.length > 0) {

 for (var i = 0; i < evt.length; i++) {

 if (evt[i].Event == 'WRITE') {

 scli.UploadWithPath(evt[i].Object, '/realtimebackup', 0);

 }

 }

 }

 }

 scli.Close();

 }

 scli = null;

}

Start watching for events

function Start()

This FsWatcher method triggers the asynchronous execution of the underlying file-system watcher, so that
your script can subsequently poll it for pending events. No notification will be available to the script prior to
calling this method.

Example:

{

 ConsoleFeedback = true;

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'some_username';

 scli.PassFromSecret = 'name_of_the_secret_password';

 if (scli.Connect()) {

 watchr = new FsWatcher();

 watchr.WatchDir('C:\\Docs', true);

 watchr.Start(); // from this point on, notification will be available

 while (true) {

 Sleep(1000);

 if (HaltSignalReceived()) {

 break;

 }

 evt = watchr.Events()

 if (evt.length > 0) {

 for (var i = 0; i < evt.length; i++) {

 if (evt[i].Event == 'WRITE') {

 scli.UploadWithPath(evt[i].Object, '/realtimebackup', 0);

 }

Syncplify.me AFT! Manual

42 / 66

 }

 }

 }

 scli.Close();

 }

 scli = null;

}

Poll the file system event queue

function Events() // returns an array of event objects

Each event object is defined as follows:
TimeStamp JSTime // timestamp of when the event happened (in JavaScript Date()

compatible format)

Event string // file system event as string: CREATE, WRITE, REMOVE,

RENAME, CHMOD

Object string // the file system object (file or directory) affected by

Event

This FsWatcher method is designed to be called within the scope of an endless loop, to keep the script
running forever (unless terminated by an admin or an OS signal). Each time this method is called, it returns
an array of pending, to-be-handled, file system notifications. Every call to this method will also clear the
pending notifications, so all events that are left un-handled will not be notified again.

Example:

{

 ConsoleFeedback = true;

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'some_username';

 scli.PassFromSecret = 'name_of_the_secret_password';

 if (scli.Connect()) {

 watchr = new FsWatcher();

 watchr.WatchDir('C:\\Docs', true);

 watchr.Start();

 while (true) {

 Sleep(1000);

 if (HaltSignalReceived()) {

 break;

 }

 evt = watchr.Events() // gets the list of pending events to be handled

 if (evt.length > 0) {

 for (var i = 0; i < evt.length; i++) {

 if (evt[i].Event == 'WRITE') {

 scli.UploadWithPath(evt[i].Object, '/realtimebackup', 0);

 }

 }

 }

 }

 scli.Close();

 }

 scli = null;

}

List a local directory

function ListDir(what, mask)

ListDir lists the contents of a directory in the local file system.

Syncplify.me AFT! Manual

43 / 66

This functions accepts either 1 or 2 parameters:
· what must be a valid and existent directory on a local file system, this parameter is mandatory
· mask is a file-mask (example: "*.docx") to limit the scope of the returned results only to items

matching such mask

This function is NOT recursive, therefore it only returns matching items from the specific directory identified
by the what parameter, but NOT items contained in sub-directories of the what directory.

List a local directory (recursive)

function ListDirR(what, mask)

ListDirR lists the contents of a directory, and all of its sub-directories, in the local file system.

This functions accepts either 1 or 2 parameters:
· what must be a valid and existent directory on a local file system, this parameter is mandatory
· mask is a file-mask (example: "*.docx") to limit the scope of the returned results only to items

matching such mask

This function is recursive, therefore it returns all matching items from the specific directory identified by the
what parameter, as well as items contained in sub-directories of the what directory.

Copy a local file

function CopyFile(what, toWhere)

This function copies the what file to the toWhere destination directory in the local file system.

Move a local file

function MoveFile(what, toWhere)

This function moves the what file to the toWhere destination directory in the local file system.

Delete a file

function DelFile(what)

This function deletes the what file from the local file system.

Securely erase a file

function SecureErase(fileName, numPasses)

This function deletes the fileName file from the local file system using a secure erasure algorithm. This
means that the file will be overwritten with crypto-secure pseudo-random data before it's actually deleted
from the storage medium. For this reason, depending on the size of the file, this function may take a while
to complete.

The second parameter (numPasses) is optional and specifies how many times the file needs to be
overwritten with crypto-secure pseudo-random data before the actual deletion occurs.

As almost any other function in the aftJS, this function returns a boolean value, true if it succeeds, false
if it fails.

Syncplify.me AFT! Manual

44 / 66

Example (on Windows, without optional parameter):

{

 SecureErase('C:\\Data\\SomeFile.docx');

}

Example (on Linux, with optional parameter to specify that we want the file to be overwritten 3 times):

{

 SecureErase('/home/docs/SomeFile.pdf', 3);

}

Create a directory

function MakeDir(what)

This function attempts to create the what directory path on the local (or UNC) file system. If the directory
is successfully created or if it already exists this function will return true, instead if the directory cannot be
created this function will fail and return false.

Delete a directory

function DelDir(what)

This function attempts to deletes the what directory from the local file system. If the directory is empty the
function will succeed and return true, if the directory isn't empty this function will fail and return false.

Delete a directory tree

function DelTree(what)

This function attempts to deletes the what directory from the local file system. Even if the directory isn't
empty, the function will try to recursively delete all files and sub-directories within it. If it succeeds it returns
true, if it fails it returns false.

Read a text file

function ReadTextFile(filename)

This function reads a text file and returns its entire contents as a string.
If the file doesn't exist or if the operating system returns an I/O error, this function returns an empty string.

Example:

{

 var fileContents = ReadTextFile('./docs/somefile.txt');

 Log(fileContents);

}

Write some text to file

Syncplify.me AFT! actually does offer 2 distinct functions to write text to file:

function WriteTextToFile(filename, text)

function AppendTextToFile(filename, text)

Syncplify.me AFT! Manual

45 / 66

Both of this functions write text to a file and return true if the operation was successful, otherwise they
return false.
Also, both functions create the file if it doesn't exist.

The main difference is that the AppendTextToFile function will append text at the end of a file (if it
exists) while the WriteTextToFile will overwrite whatever contents are already in a file with the
specified text, and all pre-existing file content will be lost.

Both functions support "escaped strings", so, for example, if you want to write a sentence and then a
NEWLINE special control character, you can simply add \n to the text to be written to file. String escaping
follows this convention.

Example:

{

 AppendTextFile('./docs/somefile.txt', 'Hello world!\n');

}

Create a zip archive

function Zip(what, zipArchive)

The Zip function creates a compressed archive with the files that are passed to it in the what argument.
Supports wildcards. If the destination zip archive already exists it will be overwritten and replaced.

Example:

{

 Zip('./documents/*.docx', './archives/dox.zip');

}

Identify a file MIME-type

function FileType(filename)

Most file types can be identified regardless of the file name or extension, by simply reading the
first 261 bytes of the file itself (no need to read the whole file, so this process is extremely quick
and doesn't waste any RAM).

Here's a list of file types that this function can identify:

Image
jpg - image/jpeg
png - image/png
gif - image/gif
webp - image/webp
cr2 - image/x-canon-cr2
tif - image/tiff
bmp - image/bmp
heif - image/heif
jxr - image/vnd.ms-photo
psd - image/vnd.adobe.photoshop

https://golang.org/ref/spec#Rune_literals

Syncplify.me AFT! Manual

46 / 66

ico - image/x-icon
dwg - image/vnd.dwg

Video
mp4 - video/mp4
m4v - video/x-m4v
mkv - video/x-matroska
webm - video/webm
mov - video/quicktime
avi - video/x-msvideo
wmv - video/x-ms-wmv
mpg - video/mpeg
flv - video/x-flv
3gp - video/3gpp

Audio
mid - audio/midi
mp3 - audio/mpeg
m4a - audio/m4a
ogg - audio/ogg
flac - audio/x-flac
wav - audio/x-wav
amr - audio/amr
aac - audio/aac

Archive
epub - application/epub+zip
zip - application/zip
tar - application/x-tar
rar - application/x-rar-compressed
gz - application/gzip
bz2 - application/x-bzip2
7z - application/x-7z-compressed
xz - application/x-xz
pdf - application/pdf
exe - application/x-msdownload
swf - application/x-shockwave-flash
rtf - application/rtf
iso - application/x-iso9660-image
eot - application/octet-stream
ps - application/postscript
sqlite - application/x-sqlite3
nes - application/x-nintendo-nes-rom
crx - application/x-google-chrome-extension
cab - application/vnd.ms-cab-compressed
deb - application/x-deb
ar - application/x-unix-archive
Z - application/x-compress
lz - application/x-lzip

Syncplify.me AFT! Manual

47 / 66

rpm - application/x-rpm
elf - application/x-executable
dcm - application/dicom

Documents
doc - application/msword
docx - application/vnd.openxmlformats-officedocument.wordprocessingml.document
xls - application/vnd.ms-excel
xlsx - application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
ppt - application/vnd.ms-powerpoint
pptx - application/vnd.openxmlformats-officedocument.presentationml.presentation

Font
woff - application/font-woff
woff2 - application/font-woff
ttf - application/font-sfnt
otf - application/font-sfnt

Application
wasm - application/wasm

Introduction to the HttpCli object

When JavaScript is run inside of the browser, you can use the (non-ECMA) fetch function to perform
http/https operations. The problem with fetch, though, is that it's designed to run inside of an environment
(the web browser) that's totally asynchronous by definition. You start fetching something, then the browser
goes on to do something else, and when (if ever) the fetched content becomes available, the execution
cycle of the fetch operation is resumed. This works well in a browser, but would never work inside of a
scripting environment where certainty is an absolute requirement when it comes to execution flow.

We have, therefore, added to AFT! our own native http/https client object, called HttpCli.
It runs synchronized with the execution environment, ensuring that all functions that rely on the availability of
the results of a web request will be correctly serialized. And, for convenience and ease of use, it is
possible to configure it using the "fluent paradigm".

Here's the same example three times, the first version is more traditional, the second and third versions
use the "fluent paradigm":

First version (non-fluent):
{

 var hc = new HttpCli();

 hc.Url("https://www.example.com");

 hc.Timeout(30);

 hc.Header("Custom-Header", "My custom header content");

 var res = hc.Get();

}

Second version (fluent):
{

 var hc = new HttpCli();

 var res = hc.Url("https://www.example.com").Timeout(30).Header("Custom-

Header", "My custom header content").Get();

}

Third version (fluent and folded):

Syncplify.me AFT! Manual

48 / 66

{

 var hc = new HttpCli();

 var res = hc.Url("https://www.example.com").

 Timeout(30).

 Header("Custom-Header", "My custom header content").

 Get();

}

Learn mode about HttpCli's configuration methods, then learn about its HTTP(S) verb methods and
response object.

HttpCli configuration methods

Before you call any of the http/https verbs to actually make the HttpCli do something, you must first
configure it according to what you actually intend it to do. This means, for example, specifying the URL you
want to call, or the request body you want to send to such URL, or even a timeout past which you want
this call to give up.

The HttpCli object is quite flexible in these regards; let's assume your HttpCli client object name is hc (you
just created it with var hc = new HttpCli();)... here's what you can/need-to configure:

hc.Url(fullyQualifiedUrl) // mandatory; fullyQualifiedUrl is a string

This configuration is mandatory, every time you want to perform an http/https call, you have to set the URL
property, which is the full address of the web resource you're addressing your call to (ex:
hc.Url("https://www.example.com");).
Calling with method more than once will substitute the previous URL, so only the most recent call to
.Url() will be considered.

hc.Accept(contentType) // optional; contentType is a string

You may set this configuration if you want your HttpCli to only accept from the server a response that has
a certain MIME type.
Calling with method more than once will substitute the previous value of Accept, so only the most recent
call to .Accpet() will be considered.

hc.ApiKey(yourApiKey) // optional; yourApiKey is a string

If the server requires an API Key to serve a certain resource, you may specify such API Key using this
method.
Calling with method more than once will substitute the previous value of ApiKey, so only the most recent
call to .ApiKey() will be considered.

hc.BasicAuth(username, password) // optional; username and passwords are

strings

If the server requires basic authentication to serve a certain resource, you may specify username and
password using this method.
Calling with method more than once will substitute the previous value of BasicAuth, so only the most recent
call to .BasicAuth() will be considered.

hc.Bearer(bearerToken) // optional; bearerToken is a string

If the server requires a Bearer Token to serve a certain resource, you may specify such Bearer Token
using this method.
Calling with method more than once will substitute the previous value of the Bearer Token, so only the most
recent call to .Bearer() will be considered.

hc.FormField(fieldName, fieldValue) // optional; fieldName and fieldValue are

strings

If you want to send your request body with a multipart/form in it (typical with POST request), you may call
this method to add a form field and its value to the request body payload. This call is "additive", so you can
call .FormField() multiple times to add multiple form fields and values.

hc.Header(headerName, headerValue) // optional; headerName and headerValue are

strings

If you want to send your http/https request with additional headers in it, you may call this method to add a

Syncplify.me AFT! Manual

49 / 66

header and its value to the request itself before it is sent to the server. This call is "additive", so you can
call .Header() multiple times to add multiple headers to the outgoing http/https call.

hc.InsecureSkipVerify() // no parameters

Adding InsecureSkipVerify() to your fluent code line instructs the client to accept any server certificate,
even self-signed ones, when performing https:// requests.

hc.ReqBody(body) // optional; body is a string (or a stringified JSON object)

This mathod allows you to specify the raw body payload to be sent with this request; if the string you pass
to it is recognized as a valid JSON structure, the HttpCli object will also automatically add/set the "Content-
Type" header to "application/json".
Calling with method more than once will substitute the previous body payload, so only the most recent call
to .ReqBody() will be considered.

hc.Timeout(seconds) // optional; seconds is a positive integer

This simply sets a timeout past which HttpCli will give up if it hasn't received a response from the server
yet.
Calling with method more than once will substitute the previous timeout value, so only the most recent call
to .Timeout() will be considered.

hc.UserAgent(softwareId) // optional; softwareId is a string

This method allows you to set a custom User-Agent for your http/https call.
Calling with method more than once will substitute the previous user agent value, so only the most recent
call to .UserAgent() will be considered.

HttpCli http/https verbs

The HTTP(S) protocol defines the following "verbs" (that typically all web servers honor, although
restrictions may apply because of security configurations):
· GET
· POST
· PUT
· PATCH
· DELETE
· HEAD

AFT!'s HttpCli object, therefore has a method for each one of the above verbs, plus one extra method to
allow you to send custom verbs to web servers that may be custom-built to support them:
· .Get()

· .Post()

· .Put()

· .Patch()

· .Delete()

· .Head()

· .Do(customverb) // customverb must be a string

All methods here above return an HttpRes (http response) object.

Here's a few examples of valid usages of HttpCli's verb methods:

Example #1 (a simple get):
{

 var hc = new HttpCli();

 var res = hc.Url("https://www.example.com").Timeout(30).Get();

 if (res.IsValid() && (res.StatusCode() == 200)) {

 Log(res.BodyAsString());

 }

Syncplify.me AFT! Manual

50 / 66

}

Example #2 (post some JSON data):
{

 var hc = new HttpCli();

 var res =

hc

.Url

("https://www.some.host").Timeout

(30).ReqBody('{"name":"John","age":42}').Post();

 if (res.IsValid() && (res.StatusCode() == 201)) {

 Log('Success!');

 }

}

Example #3 (a custom verb):
{

 var hc = new HttpCli();

 // Let's pretend your custom web server supports a "HELLO" verb

 var res = hc.Url("https://www.your.host").Timeout(30).Do("HELLO");

 if (res.IsValid() && (res.StatusCode() == 200)) {

 Log(res.BodyAsString());

 }

}

Learn more about how to use HttpCli's response object.

HttpCli response object

Every time an HttpCli verb method is called, it will produce an HttpRes object as a result.

Let's consider the following simple script for example:
{

 var hc = new HttpCli();

 var res = hc.Url("https://www.example.com").Timeout(30).Get();

 // "res" here above is an HttpRes object with its own methods

}

Now, from the example above, the res object will have the following methods:

res.IsValid() // boolean

This method simply returns true if the http/https call was completed, or false otherwise (for example if
the call times out this method returns false)

res.StatusCode() // integer number

This method returns the status code resulting from the http/https call, for example if everything went well a
.Get() request will probably return 200, while a .Post() request will return 201. Other common and
well-known codes are 403 (unauthorized), 404 (not found), and 500 (internal server error). Learn more
about HTTP status codes.

res.BodyAsString() // string

This method returns the body of the response as a string (useful when the body is a web page or a JSON
object for example).

res.BodyAsBytes() // array of bytes

This method returns the body of the response as an array of bytes (useful when the body is a binary
object, like an image for example).

res.BodySaveToFile(filepath) // filepath must be a string

This method saves the body of the response to a file which fully-qualified path is passed as an argument
(ex: /downloads/budget.csv).

res.ContentType() // string

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Syncplify.me AFT! Manual

51 / 66

This method returns a string containing the MIME Content-Type as reported by the server.

res.ContentLength() // integer

This method returns the Content-Length as reported by the server (some servers and CDNs fail to report
this).

res.Encoding() // string

This method returns the Content-Transfer-Encoding as reported by the server (this also may be missing in
some cases).

res.Headers() // JSON object, each property of the object is 1 response header

This method returns a single JSON object in which each property represents one response header.
Example:
{

 "Cache-Control":"max-age=604800",

 "Content-Type":"text/html; charset=UTF-8",

 "Date":"Sun, 30 Aug 2020 16:24:06 GMT",

 "X-Cache":"HIT",

 "Age":"512004",

 "Etag":"\"3147526947+gzip\"",

 "Expires":"Sun, 06 Sep 2020 16:24:06 GMT",

 "Server":"ECS (sjc/4E76)",

 "Last-Modified":"Thu, 17 Oct 2019 07:18:26 GMT",

 "Vary":"Accept-Encoding"

}

res.Cookies() // array of string/string JSON objects, each object is a cookie

This method returns an array of JSON object, in which each object represents a cookie returned by the
web server in this response. For example, Google returns an array of cookies like this one:
[

 {

 "Name":"1P_JAR",

 "Value":"2020-08-30-16",

 "Path":"/",

 "Domain":".google.com",

 "Expires":"2020-09-29T16:32:11Z",

 "RawExpires":"Tue, 29-Sep-2020 16:32:11 GMT",

 "MaxAge":0,

 "Secure":true,

 "HttpOnly":false,

 "SameSite":0,

 "Raw":"1P_JAR=2020-08-30-16; expires=Tue, 29-Sep-2020 16:32:11 GMT; path=/

; domain=.google.com; Secure",

 "Unparsed":[]

 },

 {

 "Name":"NID",

 "Value":"204=EHXBqKVUuskC5fcv3UnbLPB7oN0LU-

nTODKDhuvBF5WzonZJToiwoBK12N7gr3Pycq8jCZDNS6PW9SV57GtIeCYw488",

 "Path":"/",

 "Domain":".google.com",

 "Expires":"2021-03-01T16:32:11Z",

 "RawExpires":"Mon, 01-Mar-2021 16:32:11 GMT",

 "MaxAge":0,

 "Secure":false,

 "HttpOnly":true,

 "SameSite":0,

 "Raw":"NID=204=EHXBqKVUuskC5fcv3UnbLPB7oN0LU-

nTODKDhuvBF5WzonZJToiwoBK12N7gr3Pycq8jCZDNS6PW9SV57GtIeCYw488; expires=Mon,

01-Mar-2021 16:32:11 GMT; path=/; domain=.google.com; HttpOnly",

 "Unparsed":[]

 }

]

Syncplify.me AFT! Manual

52 / 66

AMQP version 0.9.1 and 1.0

There are two milestone versions of the AMQP message queuing protocol, and they are totally
incompatible with each other:
· AMQP v0.9.1: used by RabbitMQ, StormMQ, Apache Qpid, JORAM, and others...
· AMQP v1.0: used by Apache ActiveMQ, Azure Event Hubs, Azure Service Bus, Solace, and others...

Syncplify.me AFT! features dedicated objects to handle each one of the above protocols, so - please -
make sure you determine the exact protocol your provider uses, and choose the proper object,
otherwise you won't be able to connect to your message queue service.

AmqpClient091() is the message queue client for AMQP v0.9.1
AmqpClient10() is the message queue client for AMQP v1.0

Both client objects supports both the plain-unencrypted amqp:// and the secure amqps:// protocols.

Only the names of the object creator functions differ. All methods of both objects are absolutely identical.
Here's two examples, so you can see that the only line that differs is the line to create the correct client
object, in every other way these 2 scripts are absolutely identical:

Script that connects to an AMQP v0.9.1 (ex: RabbitMQ) and monitors the "myqueue" queue:
{

 ConsoleFeedback = true;

 var cli = new AmqpClient091();

 cli.URL = 'amqp://localhost:5672';

 cli.User = 'guest';

 cli.Pass = 'guest';

 if (cli.Connect()) {

 cli.MonitorQueue('myqueue');

 while (true) {

 Sleep(1000);

 if (HaltSignalReceived()) {

 break;

 }

 var msgs = cli.GetMessages();

 if (msgs.length > 0) {

 Log(JSON.stringify(msgs));

 }

 }

 cli.Close();

 }

 cli = null;

}

Script that connects to an AMQP v1.0 (ex: ActiveMQ) and monitors the "myqueue" queue:
{

 ConsoleFeedback = true;

 var cli = new AmqpClient10();

 cli.URL = 'amqp://localhost:5672';

 cli.User = 'guest';

 cli.Pass = 'guest';

 if (cli.Connect()) {

 cli.MonitorQueue('myqueue');

Syncplify.me AFT! Manual

53 / 66

 while (true) {

 Sleep(1000);

 if (HaltSignalReceived()) {

 break;

 }

 var msgs = cli.GetMessages();

 if (msgs.length > 0) {

 Log(JSON.stringify(msgs));

 }

 }

 cli.Close();

 }

 cli = null;

}

AMQP client object properties

Both the AmqpClient091 and the AmqpClient10 objects have the exact same properties:

URL string // ex: amqp://amqp.myhost.com:5672 or

amqps://amqp.myhost.com:5672

User string // username if session must authenticate

Pass string // password (but it's better to use PassFromSecret)

PassFromSecret string // name of the secret to retrieve the password at

runtime

Connecting to an AMQP message queue

function Connect()

Before calling the Connect() method of the AmqpClinentXX object of your choice it is necessary to
populate the object properties.

Once the properties are correctly populated, calling the Connect() methods attempts to connect to the
AMQP message queue, and returns a boolean value:
· true: the connection was successful (and you can monitor one or more queues)
· false: the connection was unsuccessful (and you should not attempt to monitor any queue)

Example:
{

 ConsoleFeedback = true;

 var cli = new AmqpClient091();

 cli.URL = 'amqp://localhost:5672';

 cli.User = 'guest';

 cli.Pass = 'guest';

 if (cli.Connect()) {

 cli.MonitorQueue('myqueue');

 while (true) {

 Sleep(1000);

 if (HaltSignalReceived()) {

 break;

 }

 var msgs = cli.GetMessages();

 if (msgs.length > 0) {

 Log(JSON.stringify(msgs));

Syncplify.me AFT! Manual

54 / 66

 }

 }

 cli.Close();

 }

 cli = null;

}

Adding a queue to monitor

function MonitorQueue(queueName) // queueName is expected to be a string

The MonitorQueue() function instructs the client object to start monitoring the specified queue for
incoming messages.

Example:
{

 ConsoleFeedback = true;

 var cli = new AmqpClient091();

 cli.URL = 'amqp://localhost:5672';

 cli.User = 'guest';

 cli.Pass = 'guest';

 if (cli.Connect()) {

 cli.MonitorQueue('myqueue');

 while (true) {

 Sleep(1000);

 if (HaltSignalReceived()) {

 break;

 }

 var msgs = cli.GetMessages();

 if (msgs.length > 0) {

 Log(JSON.stringify(msgs));

 }

 }

 cli.Close();

 }

 cli = null;

}

Processing incoming events/messages

function GetMessages() // returns an array of messages received from the queue

Each returned message (each item of the array) has the following format:
{

 receivedAt // JavaScript date

 queue // string

 message // string

}

It is also recommended, inside the loop in which GetMessages() is called iteratively, to also monitor
whether a "halt" request has been issued and the script must terminate.

Example:
{

 ConsoleFeedback = true;

 var cli = new AmqpClient091();

 cli.URL = 'amqp://localhost:5672';

 cli.User = 'guest';

 cli.Pass = 'guest';

Syncplify.me AFT! Manual

55 / 66

 if (cli.Connect()) {

 cli.MonitorQueue('myqueue');

 while (true) {

 Sleep(1000);

 if (HaltSignalReceived()) {

 break;

 }

 var msgs = cli.GetMessages();

 if (msgs.length > 0) {

 Log(JSON.stringify(msgs));

 }

 }

 cli.Close();

 }

 cli = null;

}

Send to Slack (webhook)

SendToSlackWebHook(

webhookURL, // string (mandatory)

message, // string (mandatory)

sender, // string (optional)

icon // string (optional)

)

This function posts a notification to a Slack channel via Slack's "Incoming WebHooks".

The webhookURL and message parameters are mandatory. You may, if you wish, also specify a sender
(free-text string), and an icon name using the standard emoji icon name format.

This function returns true if the notification was successfully posted to the desired Slack channel,
otherwise it returns false.

Example:

{

 SendToSlackWebHook

('https://hooks.slack.com/services/********/**********/******************,

'Some message', 'Syncplify.me AFT!', ':smile:');

}

Send SMS via Twilio

function SendSMSViaTwilio(

twilioSid, // string

twilioToken, // string

senderNum, // string

recipientNum, // string

message // string

)

This function sends an SMS (text) message to a recipient (cell)phone number via Twilio.

The twilioSid and twilioToken parameters are the SID and AuthToken issued to you by Twilio when
you signed up for the service.

The senderNum is one of the Twilio numbers you've been assigned; this number will be the phone number
of the sender of the SMS. The recipientNum is the phone number to which you are trying to send the
SMS. Both of these numbers shall be in the international phone number standard format (example:
"+15550005555").

The message parameter is a short string (SMS texts may have a limited length that varies based upon

https://api.slack.com/messaging/webhooks
https://www.webfx.com/tools/emoji-cheat-sheet/
https://www.twilio.com/

Syncplify.me AFT! Manual

56 / 66

technology and carrier, typically 140 or 280 characters). This is the actual message that Twilio will try to
deliver to the intended recipient.

This function returns true if the message was successfully accepted for delivery by Twilio, otherwise it
returns false.
Important note: Twilio's acceptance of a message does not imply that the message will be successfully
delivered to the recipient. You can track the delivery through your Twilio management console.

Example:

{

 SendSMSViaTwilio('********', '*********', '+12345678901', '+15550005555',

'Hello from AFT!');

}

Send an email via SMTP

function SendMailViaSMTP(srv, port, user, pass, from, to, subj, body, attach)

The SendMailViaSMTP function sends an email using the designated SMTP server as a relay. All
parameters are strings, except for the port parameter which is an integer. Note: the to parameter may
contain multiple recipients, separated by semi-colon (;) as you can see in the example below.

Example:

{

 SendMailViaSMTP('smtp.gmail.com', 587, 'me@me.me', GetSecret('smtp pass'),

'me@me.me', 'you@you.com;it@they.com', 'NEW BACKUP UPLOADED!', 'A new backup

has been uploaded!'), '');

}

Run a process

function Run(commandLine)

The Run function spawns a process that executes an external program. The executed program can take
command line parameters, as shown in the example below.
This function waits for the spawned process to exit, and then returns true if it ran without errors, or
false if errors occurred.

Example:

{

 if (Run('cmd /c "/my_shell_scripts/some_script.bat"')) {

 Log('Batch script ran successfully');

 }

}

Run a process asynchronously

function RunAsync(commandLine)

The RunAsync function spawns a process that executes an external program. The executed program can
take command line parameters, as shown in the example below.
This function does not wait for the spawned process to exit, and immediately returns true if the process
was started; if the process wasn't started it returns false.

Syncplify.me AFT! Manual

57 / 66

Example:

{

 if (RunAsync('cmd.exe /c "/my_shell_scripts/some_script.bat"')) {

 Log('Batch script started successfully');

 }

}

Resize (resample) a JPEG

function JPEGResample(imgFile, maxWidth, maxHeight, quality)

The JPEGResample function resizes a JPEG image (imgFile) using the Lanczos3 resampling method to
keep the best possible level of detail.
This function also retains the original image's aspect-ratio, and chooses between maxWidth and
maxHeight whichever one would result in a smaller image. If you wish one of these two parameters to be
ignored, simply set it to 0 (zero).
The last parameter (quality) is a numeric value, between 1 and 100, that indicates the desired quality of
the resulting image inversely proportional to its lossy compression; basically an image saved with quality
index of 25 will produce a smaller file but lose a lot more detail than an image saved with quality index of
75.

Example:

{

 JPEGResample('./self_portrait.jpg', 800, 600, 90);

}

Resize (resample) a PNG

function PNGResample(imgFile, maxWidth, maxHeight)

The PNGResample function resizes a PNG image (imgFile) using the Lanczos3 resampling method to
keep the best possible level of detail.
This function also retains the original image's aspect-ratio, and chooses between maxWidth and
maxHeight whichever one would result in a smaller image. If you wish one of these two parameters to be
ignored, simply set it to 0 (zero).

Example:

{

 PNGResample('./some_picture.png', 800, 600);

}

Extract JPEG metadata

function JPEGMetadata(imgFile)

This function extract various meta-information (including full EXIF data) about a JPEG image from a file
(imgFile).

Syncplify.me AFT! Manual

58 / 66

Example:

{

 mdata = JPEGMetadata('./self_portrait.jpg');

 Log(JSON.stringify(mdata));

}

Produces an output like this:

{

 "Exif": {

 "ApertureValue": [

 "149/32"

],

 "ColorSpace": [

 1

],

 "ComponentsConfiguration": "",

 "CompressedBitsPerPixel": [

 "5/1"

],

 "CustomRendered": [

 0

],

 "DateTime": "2003:12:14 12:01:44",

 "DateTimeDigitized": "2003:12:14 12:01:44",

 "DateTimeOriginal": "2003:12:14 12:01:44",

 "DigitalZoomRatio": [

 "2272/2272"

],

 "ExifIFDPointer": [

 196

],

 "ExifVersion": "0220",

 "ExposureBiasValue": [

 "0/3"

],

 "ExposureMode": [

 0

],

 "ExposureTime": [

 "1/500"

],

 "FNumber": [

 "49/10"

],

 "FileNumber": [

 1171771

],

 "FileSource": "",

 "FirmwareVersion": "Firmware Version 1.10",

 "Flash": [

 24

],

 "FlashpixVersion": "0100",

 "FocalLength": [

 2,

 682,

 286,

 215

],

 "FocalPlaneResolutionUnit": [

Syncplify.me AFT! Manual

59 / 66

 2

],

 "FocalPlaneXResolution": [

 "2272000/280"

],

 "FocalPlaneYResolution": [

 "1704000/210"

],

 "ImageType": "IMG:PowerShot S40 JPEG",

 "InteroperabilityIFDPointer": [

 1416

],

 "InteroperabilityIndex": "R98",

 "Make": "Canon",

 "MakerNote": "",

 "MaxApertureValue": [

 "194698/65536"

],

 "MeteringMode": [

 2

],

 "Model": "Canon PowerShot S40",

 "ModelID": [

 17891328

],

 "Orientation": [

 1

],

 "PixelXDimension": [

 2272

],

 "PixelYDimension": [

 1704

],

 "ResolutionUnit": [

 2

],

 "SceneCaptureType": [

 0

],

 "SensingMethod": [

 2

],

 "ShutterSpeedValue": [

 "287/32"

],

 "ThumbJPEGInterchangeFormat": [

 2036

],

 "ThumbJPEGInterchangeFormatLength": [

 5448

],

 "UserComment": "",

 "WhiteBalance": [

 0

],

 "XResolution": [

 "180/1"

],

 "YCbCrPositioning": [

 1

],

 "YResolution": [

 "180/1"

]

Syncplify.me AFT! Manual

60 / 66

 },

 "Height": 360,

 "Valid": true,

 "Width": 480

}

Extract PNG metadata

function PNGMetadata(imgFile)

This function extract various meta-information about a PNG image from a file (imgFile).

Example:

{

 mdata = PNGMetadata('./self_portrait.png');

 Log(JSON.stringify(mdata));

}

Produces an output like this:

{

 "Height": 360,

 "Valid": true,

 "Width": 480

}

Log a custom log line

function Log(object)

This function adds your own custom line to the script's execution log. Typically you'd call this function with a
string parameter, but truly it will log whatever you pass to it.

It's practically very similar to Log() and it's used the same way. But our own Log() function is to be
preferred to Log() because our Log() function always works, even for scripts run from within the web
interface, whereas Log() only works when you run your scripts from within your operating system's shell.

Example:

{

 Log('Hello!!');

 Log(JSON.stringify(some_data));

}

Detect halt requests

function HaltSignalReceived() // boolean

You can check the result of the HaltSignalReceived()function anywhere in your script. If it returns
true it means that an administrator (or the Operating System itself) has requested the execution of the
current script to be stopped.

Once a halt request is received, the execution of the script will be stopped regardless of whether or not
you check this value, but checking it gives you the chance to handle the situation gracefully.

Syncplify.me AFT! Manual

61 / 66

Example:

{

 ConsoleFeedback = true;

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'some_username';

 scli.PassFromSecret = 'name_of_the_secret_password';

 if (scli.Connect()) {

 watchr = NewFsWatcher();

 watchr.WatchDir('C:\\Docs', true);

 watchr.Start();

 while (true) {

 Sleep(1000);

 if (HaltSignalReceived()) {

 break; // break infinite loop if halt signal was received

 }

 evt = watchr.Events() // gets the list of pending events to be handled

 if (evt.length > 0) {

 for (var i = 0; i < evt.length; i++) {

 if (evt[i].Event == 'WRITE') {

 scli.UploadWithPath(evt[i].Object, '/realtimebackup', 0);

 }

 }

 }

 }

 scli.Close();

 }

 scli = null;

}

Sleep (pause execution)

function Sleep(milliseconds)

Unlike many other programming languages, JavaScript doesn't really have a native Sleep function (although
there are several ways to implement it, for those willing to spend a few lines of code on it). This utility
function just makes it much easier to pause the execution of an aftJS script for a certain number of
milliseconds, when needed.

Get a secret

function GetSecret(secretName)

Syncplify.me AFT! allows you to store secrets (strings) in its encrypted database, so you don't have to put
them in clear in your scripts. A typical example is a password to a remote file server, you definitely don't
want to type such password in plain-text in your script, so you can use GetSecret to conceal it.

In Syncplify.me AFT! every secret is identified by another non-secret string, which is the secret's "name" or
"description", which you decide when you create and store the secret. Let's say, for example, that your
SFTP server's password is "P@ssw0rd", you can store it encrypted in Syncplify.me AFT! and call it "my
SFTP password". If you do so, then you can write your script like this:
{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.Password = GetSecret('my SFTP password');

 if (scli.Connect()) {

 // perform your file transfers...

 // ...

 // ...

 scli.Close();

Syncplify.me AFT! Manual

62 / 66

 }

 scli = null

}

This is a very context-agnostic way to store and use any type of secret in Syncplify.me AFT!... for
passwords specifically, don't forget that most client objects provide the PassFromSecret property, which
can be used like this:
{

 var scli = new SftpClient();

 scli.Host = 'your.sftpserver.com:22';

 scli.User = 'someusername';

 scli.PassFromSecret = 'my SFTP password';

 if (scli.Connect()) {

 // perform your file transfers...

 // ...

 // ...

 scli.Close();

 }

 scli = null

}

Extract file path

function ExtractPath(fullyQualifiedFileName)

This function takes a fully qualified path name (root-based path including all directories and the file name)
and returns the path portion only.

Example:

{

 res = ExtractPath('/docs/sheets/budget.xlsx'); // res will be "/docs/sheets"

}

Extract file name

function ExtractName(fullyQualifiedFileName)

This function takes a fully qualified path name (root-based path including all directories and the file name)
and returns the file-name portion only.

Example:

{

 res = ExtractName('/docs/sheets/budget.xlsx'); // res will be "budget.xlsx"

}

Extract file extension

function ExtractExt(fullyQualifiedFileName)

This function takes a fully qualified path name (root-based path including all directories and the file name)
and returns the file extension portion only.

Example:

{

Syncplify.me AFT! Manual

63 / 66

 res = ExtractExt('/docs/sheets/budget.xlsx'); // res will be ".xlsx"

}

Number to string (with padding)

function NumToStrPad(number, length)

This functions takes a number and returns a string representation of that number padded with zeroes to
ensure that the resulting string is not shorter than length. Useful, for example, when you want a 2-digit
representation of month and day number in a date.

Example:

{

 var date = new Date();

 var month = date.getMonth()+1;

 monthStr = NumToStrPad(month, 2); // Ex: in May, monthStr will contain the

string "05"

}

Unique IDs (UUID)

Syncplify.me AFT! provides 3 different functions to create unique IDs according to your taste and
preferences.

var uid = ShortUID();

// uid will contain a string like Rp68VrvHMNcc5jffKdQaWZ

var uid = LongUID();

// uid will contain a string like oUhCu6wp6DrmyVxVaEHjzRvv3mh3PGNksSUngbX6rd6Q

var uid = UUIDv4();

// uid will contain a string like 0d2b0018-cc08-44b3-bdc1-401b2819cef1

Generate a PGP key-pair

function GeneratePGPKeys(

 keyPairName, // string

 directory, // string

 bits // integer (512, 1024, 2048, ...)

)

This function generates a PGP key-pair (public and private keys), and saves both keys as files in the
specified directory.

The name of both files will be keyPairName; the public key's file name will be kyePairName.pubkey,
while the private key's file name will be keyPairName.privkey.

The bits parameter is an integer number, and it must be a PGP-compatible key size; typically these are
powers of 2, like 512, 1024, or 2048.

If this function succeeds, it returns true, otherwise it returns false.

Example:

{

 GeneratePGPKeys('testkey', 'C:\\PGPKeys', 2048);

}

Syncplify.me AFT! Manual

64 / 66

Encrypt a file with PGP

function PGPEncryptFile(

 inFile, // string

 outFile, // string

 pubKey, // string

 privKey // string

)

This function encrypts a file using OpenPGP, the meaning of each parameter is as follows:
· inFile: this is the full path and name to the file that you wish to encrypt
· outFile: this is the full path and name of the resulting encrypted file you wish to generate
· pubKey: the full path and name to a file containing the recipient's PGP public key
· privKey: the full path and name to a file containing the sender's PGP private key

If this function succeeds, it returns true, otherwise it returns false.

Example:

{

 PGPEncryptFile('C:\\Data\\budget.xlsx', 'C:\\Encrypted\\budget.xlsx.pgp',

 'C:\\PGPKeys\\Bob.pubkey', 'C:\\PGPKeys\Alice.privkey');

}

Decrypt a file with PGP

function PGPDecryptFile(

 inFile, // string

 outFile, // string

 pubKey, // string

 privKey // string

)

This function decrypts a file using OpenPGP, the meaning of each parameter is as follows:
· inFile: this is the full path and name to the PGP-encrypted file that you wish to decrypt
· outFile: this is the full path and name of the unencrypted/plain resulting file you wish to generate
· pubKey: the full path and name to a file containing the recipient's PGP public key
· privKey: the full path and name to a file containing the recipient's PGP private key

If this function succeeds, it returns true, otherwise it returns false.

Example:

{

 PGPDecryptFile('C:\\Received\\budget.xlsx.pgp', 'C:\\Data\\budget.xlsx',

 'C:\\PGPKeys\\Bob.pubkey', 'C:\\PGPKeys\Bob.privkey');

}

Why adding 3rd party stuff?

JavaScript is a great language, very easy to learn ad use on a daily basis.
But by itself it lacks a few features that would make programmers' lives a lot easier.

The first thing is the beloved fetch function that's available to JavaScript when running inside a browser,
like Chrome or FireFox. Since our environment is not a browser, we had to bake the fetch function into
our aftJS language ourselves, and we did.

Syncplify.me AFT! Manual

65 / 66

Another well-known and loved JavaScript library that's used by tons of programmers is Underscore.js so
we added that one in as well.

How to "require" a Node.js/JavaScript module

Similarly (yet not identically) to Node.js, the aftJS language supports the require keyword.
Requiring a module is necessary in order to use any of its exported functions. Module functions cannot be
used if the module containing them hasn't been required first.

For example, this script would fail/crash at runtime:
{

 // Will crash because the underscore module hasn't been required

 if (_.contains([1, 2, 3], 3)) {

 Log('Yay!');

 }

}

But this script would compile and run flawlessly:
{

 // Require the minified Underscore.js module

 var _ = require("underscore-min");

 // Let's use the "contains" function from the previously required

Underscore.js module

 if (_.contains([1, 2, 3], 3)) {

 Log('Yay!');

 }

}

In order to require modules, they have to be installed in the "modules" subdirectory of AFT!'s configuration
folder. Typically this folder is located:
· In Windows: C:\ProgramData\Syncplify.me\AFTv1\modules
· In Linux (and other Posix OSs): /etc/xdg/Syncplify.me/AFTv1/modules

IMPORTANT NOTE: AFT! does not use nor integrate Node.js; although we try our best to ensure
compatibility with Node.js modules, we cannot guarantee that all Node.js modules will work in the AFT!
runtime environment.

The famous "underscore.js" library

Underscore is a JavaScript library that provides a whole mess of useful functional programming helpers
without extending any built-in objects. It’s the answer to the question: “If I sit down in front of a blank HTML
page, and want to start being productive immediately, what do I need?”

Underscore provides over 100 functions that support both your favorite workaday functional helpers: map,
filter, invoke — as well as more specialized goodies: function binding, javascript templating, creating quick
indexes, deep equality testing, and so on.

Learn more about it on the official Underscore.js web site.

Syncplify.me AFT! comes equipped out-of-the-box with the minified version of the underscore.js module. In
order to use it you'll need to require the module.

Example:
{

 // Require the minified Underscore.js module

 var _ = require("underscore-min");

 // Let's use the "contains" function from the previously required

Underscore.js module

 if (_.contains([1, 2, 3], 3)) {

 Log('Yay!');

 }

}

https://underscorejs.org/

Syncplify.me AFT! Manual

66 / 66

	Introduction
	Welcome

	Getting Started
	Getting help
	How to run your aftJS scripts
	Environment variables
	The aftJS language
	System requirements

	aftJS extensions to JavaScript
	aftJS specific types
	Options (for ALL client objects)
	Directory item

	Client objects and functions
	Sorting a directory list (for all client objects)
	AWS S3 client object
	Azure Blob Storage client object
	Google Cloud Storage client object
	SFTP client object
	FTP(E/S) client object
	Methods of all client objects
	Foreword
	Connect
	Disconnect
	Directory list
	Directory list (recursive)
	Search for files
	Search for files (recursive)
	File/directory existence and metadata
	Make a directory
	Rename a directory
	Delete a directory
	Delete a directory tree
	Delete a file
	Rename/move an object
	Upload files
	Upload file with path
	Upload files recursively
	Upload files with path recursively
	Download files
	Download files with path
	Download files recursively
	Download files with path recursively

	Remote file system watcher
	Create a remote file system watcher
	Watch a directory for changes
	Choose events to watch
	Delay notifications
	Inclusion/exclusion filters
	Start the remote watcher
	Poll the remote watcher event queue

	Local file system watcher
	Create a local file system watcher
	Watch a directory for changes
	Choose events to watch
	Delay notifications
	Inclusion/exclusion filters
	Start watching for events
	Poll the file system event queue

	Local file system functions
	List a local directory
	List a local directory (recursive)
	Copy a local file
	Move a local file
	Delete a file
	Securely erase a file
	Create a directory
	Delete a directory
	Delete a directory tree
	Read a text file
	Write some text to file
	Create a zip archive
	Identify a file MIME-type

	Web (HTTP/HTTPS) functions
	Introduction to the HttpCli object
	HttpCli configuration methods
	HttpCli http/https verbs
	HttpCli response object

	AMQP message queue functions
	AMQP version 0.9.1 and 1.0
	AMQP client object properties
	Connecting to an AMQP message queue
	Adding a queue to monitor
	Processing incoming events/messages

	Cloud and integration functions
	Send to Slack (webhook)
	Send SMS via Twilio

	Email and communication functions
	Send an email via SMTP

	Process management
	Run a process
	Run a process asynchronously

	Image management functions
	Resize (resample) a JPEG
	Resize (resample) a PNG
	Extract JPEG metadata
	Extract PNG metadata

	Miscellaneous functions and variables
	Log a custom log line
	Detect halt requests
	Sleep (pause execution)
	Get a secret
	Extract file path
	Extract file name
	Extract file extension
	Number to string (with padding)
	Unique IDs (UUID)

	Additional security functions
	Generate a PGP key-pair
	Encrypt a file with PGP
	Decrypt a file with PGP

	More (cool) stuff we baked into mftJS
	Why adding 3rd party stuff?
	How to "require" a Node.js/JavaScript module
	The famous "underscore.js" library

