Syncplify.me AFT! Manual

Copyright © 2019-2020 by Syncplify, Inc. All Rights Reserved.

Table of contents

Lo o (U Tt o o PSP UPPTPPP 4
WEICOME . e s s e e e e nr e s s s e e e rnrnnnsesaennnes 5
Getting Startedccovvveii e 5
GELING NEIP ceveeeeei i e eerenn 5
How to run your aftdS SCHPLS ...covveeieiiiiiicceerrrsr e e 5
Environment variables ... e 8
The aftdS [aNQUAGE ...vvvviiiiiiiiirirrs s 9
SYStEM rEQUIFEMENTS ...icveeiiiieerieei e e s e rrs s e e s s e e rre e s e e rn e s e e e s s e rnnnesernnnnsas 9
aft]S extensions to JAVaSCrPLccvuiiiiiiiiiecrrrrr e 9
AftJS SPECIFIC LYPES ..iiieeeereriie e e e e 9
Options (for ALL client objects)coovviiiiiiiiirirre 9

D1 =Tt o) Y =) o N 12
Client objects and fUNCLIONSoovviiiiiiiicccicererrr 12
Sorting a directory list (for all client objects)cceeeiiiiiiiiiiiiir e, 12
AWS S3 client ODJECEccoi i e 13
Azure Blob Storage client 0bjectcovviiiiiiiiiic s 14
Google Cloud Storage client 0bJectcovvvieivviiiiieer s 15
SFTP clienNt ODJECE covvvveiiiiicrr e 16
FTP(E/S) client ODJECT ..vvveii it e 17
Methods of all client ODJECESccoveiiieeee 19
0] =110 o PP 19
0]] T o N 19
D10] =T P 19
D=0 (0] Y 1] PRI 20
Directory liSt (FECUISIVE) ...viiiieeiiiiiiee e s e eerrsse s e e e rnse e e e r e e e e rnnnaaas 21
Search for file€Siiiiiiiiiieieeeerer e ————— 22
Search for files (FECUISIVE)vvevireieii e 23
File/directory existence and metadataccccceeieeiiiiriiiniie e 24

A E=] G T [=Tt o Y PP 25
RENAME @ AIFECLONY wuvuuiiiiiiieiiiiie et e e 26
Delete @ direCLONY .ovvvreiiiii e e e e 26
Delete @ direCtory tree ..uuuii i e e 27
Delete @ file ovieiiiii i 27
Rename/move an ODJECE ..ovvvuei e e e e e e 28
UPIOAd filES ..ot 28
Upload file With pathcceueeoiiii e 29
Upload files reCUrSIVELYuuuueiiiiiiciiiee e e eees 29
Upload files with path recursivelyuucvoiiiiiiiiii e, 30
DOWNIOAA fIlES .evvvreeeiiiieiericie e e 30
Download files With pathccoiiiiiiiii 31
Download files reCUrSIVELYccoiieiiieiiiii e e e e e 31
Download files with path recursivelyccoviviiiiiiiie e, 32
Remote file system watCherccccooviiiiir s 32
Create a remote file system watcher ..., 32
Watch a directory for Changesoeiviuiiiiii e 33

ChOOSE EVENTES 1O WALCN 1uierieiieieieiiie i e e i e s e e e s e saeasensensasensensansnsensensansnsen 34

(D7) b= NV T) = | o PSP 35

INCIUSION/EXCIUSION fIlEEIS ..vvvviiiriiiirc e e e e raaas 35
Start the remote WatCher ... e 36
Poll the remote watcher event QUEUEeueeeviiiiiiiiice e 37
Local file system WatChercouuuuiiiiii e e e 37
Create a local file system WatCher ... 37
Watch a directory for Changescceuuuiiiiiiiiiciiiicie e e 38
Choose events t0 WatCh ...ouvueeiii e e 39
Delay NOtIfiCatioNSoeiiieeiiiiice et 40
INCluSioN/EXCIUSION fIlEEIS vuuuuiiieri e e e rana s 40
Start watching for @VENtS ... 41
Poll the file system event QUEUEeuueeiiiiiiiiiiic e 42
Local file system fuNCLIONSvuuiiiiiicciiie e e rr e 42
List @ 10Cal dIr€CLONY ...uuiiieieeeie e 42
List a local direCtory (FECUISIVE)iivveverruieriisrerssnnssssssseersssnsssssssersssnsssssssenenns 43
Copy @ 10CAI il wuvneeii e e 43
MOVE @ 10CAl Il ..oiiiii i 43
Delete @ file .iviireeiie e e 43
Securely erase @ fil€oveeuuuiiii i 43
(@ =t | (3= [T (] VPSP 44
Delete @ dIrECLOMY ovvvuuii it e e e e e e e rene 44
Delete @ direCtory treeviiiiiiiiiecin e e e 44
REAd @ tEXE fil@ crvvreiii i 44
Write some teXt O file .oiviiiiiiiiiiiiriiiiiir e 44
Create @ ZIP arChiVe ...uuuuiee e e e e 45
Identify a file MIME-LYPE ..cooeeeiiiiiiiee e 45
Web (HTTP/HTTPS) fUNCLIONScoiiiceeeeices e s e e rene s s e e rr e s e 47
Introduction to the HttpCli object ... 47
HttpCli configuration Methods ... 48
HEtpCli http/https VErDS ...cvvveeeiieeeeee e e 49
HEPCli response ODJECEcciviviiiii e e 50
AMQP message queue fUNCLIONSuvueiieiiieeerrrnis s eererrsns s s e rersssn s s s s eernssnssees 52
AMQP version 0.9.1 and 1.0 ..euuueeiiiiiiiiiice e e nnn 52
AMQP client object Propertiesccvvviiirererriinn e 53
Connecting to an AMQP mMeSSAge QUEUEccceeruuuuirrrirrrrmnsnnsssssssresssssssssseens 53
Adding @ queue t0 MONITOL ...c..uiiiiiii e 54
Processing incoming eventS/MESSAGEScvvviveerrrrnsssserserrrnnnnsssssessrsssnssssesserenns 54
Cloud and integration fuNCLIONSooiiiiiiiii e 55
Send to Slack (WEDNOOK)cccvvrruieiiiiieriries s eerrrse s s s e e rans e s s s e e rnnnn e e s s eeenes 55
Send SMS Via TWIlIO .uuueeiiieeiiiiiiie e e s s e e e s e e s s s e e rrnae e e e s eeennns 55
Email and communication fUNCLiONScooviiiiiiiiiiiiir 56
Send an email Via SMTPccciiiiiie e e e e 56
ProCess Managementccuuiiiiiiiuiiiiiirie s rrrs s s s s s s e rae s s e rrne s s e rane s e e rrneeseennaneaenns 56
O = 0] 00N 56
Run a process aSyNChIONOUSIYcccvuuuiiieiiiieeiiriiisee s s s eersssse s s s s erssnneeeseeeeens 56
Image management fUNCLIONScovviiiiiiiiiiirir e 57
Resize (resample) @ JPEG ...covvuuiiiiiiciiiiiee s eeressss s s s s e rann s s s e s e rnnnnne e s s s eeenns 57
Resize (resample) @ PNG ...t r e rn s 57

[SN0 o | o = R 1 1 1] 7= (6] = 57

[= o ol = N (O 1 412 = [=) = 60

Miscellaneous functions and variablesccciiiiiiiiiiicc 60
(oo Jt= I o(N =1 o) 0 N (oo [N 11 o = P 60
Detect halt reqUESESvuvueie e 60
Sleep (PAuUSE EXECULION) oivuuuiiiiiiiiiecrie s e e e e e e e e erra e s e era e s e rnaae s 61
O o= 1< o < PP 61
Extract file path ... 62
EXEract file NAME ... 62
Extract file eXteNSION ...uuvueeii i 62
Number to string (with padding)cooovvviiiiiii e 63
UNIQUE IDS (UUID) ..uuiiiiieeiiiiiiiie s s seeressee s e s e s s erssnss s s s s s eennnnns e s s s s e srnnnnnesssseennnnnas 63

Additional security fUNCLIONSccuvuiiiii e e 63
Generate @ PGP KEY-Pailc.icveereruuiiniiieeerrssss s eerersssssssssserrsnssnssssssssssssnnsens 63
Encrypt @ file With PGP ... 64
Decrypt a file With PGPcccovuiiiiiiiiciieise e e rrn s e s e s e s eeenes 64

More (cool) stuff we baked into MftJS ... s 64
Why adding 3rd party StUff?ceuuuiiiii 64
How to "require" a Node.js/JavaScript modulecccceevviiiiiiiiiiiiiiiceeeenn, 65

The famous "underscore.js" lIbraryu.cceeiiiieiiiiiie e 65

Welcome

Thank you for choosing Syncplify.me AFT!, the perfect solution to create your own, flexible, automated,
managed file transfer tasks.

With Syncplify.me AFT! you can:
e create source-code AFT tasks in aftJS which is an extended version of JavaScript specifically
designed by Syncplify for managed file transfer
e create visual AFT tasks by simply assembling "building blocks", to bring the power of AFT to people
who are not familiar with computer programming
® run your AFT tasks in various ways, including:
0 invoking tasks from anywhere via our built-in REST API
O running tasks from the command-line
O running tasks by simply double clicking on script files
0 scheduling tasks using the built-in scheduler
0 scheduling tasks using your operating system's native scheduler/cron
e log every event in JSON-formatted log files for easy import and analysis in the most widespread log
analyzers (ex: LogRhythm, ManageEngine, SumoLogic, Loggly, ...)
e and so so much more...

Getting Started

Getting help

This Manual is the primary source of help and learning for Syncplify.me AFT!, but we also have hundreds of
articles in our online Knowledge Base. We strongly recommend to check/search the Knowledge Base
every time you have a residual doubt after reading the manual: chances are that the answer to your
question is already there waiting for you.

If the Manual and the Knowledge Base were still not enough, you can open a support ticket here.
Tickets can be opened in 2 categories:

1. to receive help and support, if you are an existing customer

2. to ask pre-sales questions, if you're planning on buying our product

How to run your aft]S scripts

Syncplify.me AFT! is very flexible, and allows you to run your scripts (AFT tasks) in several different ways,
so that you can run them interactively, or even automate their execution when necessary.

1. Run scripts from within the web interface

This is probably the most intuitive way to run your scripts. In the "Scripts” section of the web interface,
simply hit the "run" button next to the script you want to execute.

https://syngo.me/support
https://syngo.me/support
https://syngo.me/support

Syncplify.me AFT! Manual

MFT!

Scripts

Management Interface
Logged in as: admin

Add New Script Add New Script Blockly

> Dashboard

& Scripts

2% Api Keys Description

© Secrets 7] - Zc4YL8MXYRI6QArCGhbzZG GCP Example

£ Administrators B roouvskauideiegmrh Example with Blockly
Seript Library B ccs7wixsmecuwecarat Test

8 License GEE cio-coaKaoeviMekiaep Show Secret

4 total

2. Run scripts via REST API

Syncplify.me AFT! also allows you to run your scripts via REST API. To do so, first you have to create an
API Key, as shown in the picture here below.

Syneplify.me MFT!

Api Keys
Management Interface
Logged in as: admin

Add New Api Key

() Dashboard

& Scripts

& Api Keys Key

@ Secrets > -) KpSueWxkEaKGWnRAKEyJGANDFAYbgUNCHitiIBMUKB5LC
S Administrators Key: KpSueWxkEaKGWnRAkEyJGANDFAYbgUNCHItiBMUKBSLC

Whitelist: 192.168.172.0/24

EE Script Library

1 total
£ License

Please keep in mind that it's highly recommended to limit each API Key you create with a "whitelist". A
whitelist is a list of IP addresses and networks from which such API Key will be accepted. If someone tries
to run a script using this APl Key from a machine (remote IP address) that's not in the Key's whitelist, the

6/66

script will not be executed. This provides an additional level of security and safety.

Once your API Key exists, then you can run your scripts by simply consuming the following REST API
endpoint (which is super easy to do in practically every modern development language and/or shell):

n' \

--header 'x-api-key: KpSuehbkEaKGWnR4kEyIGANbFAYbgUNCH1tiBMUKBSLC

curl --request POST \
--url https://127.0.0.1:44399/v1/jobs

--header 'ac

\
\

--header

--data

3. Run scripts interactively from the command prompt

From the command prompt (or even from the PowerShell) you can invoke the execution of a script that's
saved in a file very easily by using the "run" command built into AFT! itself, and the --file (or -f shorthand)
parameter, as shown in the picture here below.

=

PS C:\Program Files\syncplify\syncplify.me MFT!> .\mft.exe run
2020/02/23 08:46:59 maxprocs: Leaving GOMAXPROCS=16: CPU quota undefined
Hello from your MFT! script :) .

PS C:\Program Files\Syncplify\Syncplify.me MFT!>

This method is very useful also to schedule the execution of your scripts (saved as files) from the Windows
Scheduler (or cron in Linux).

4. Run scripts interactively by double-clicking on them

Since you can save scripts as normal plain text files, you can also run them by simply double-clicking on
them from within your operating system's window manager (Explorer in Windows, or GNOME/KDE/... in
Linux).

E ©

Administra... bak.mftxjs

-
This PC

Recycle Bin

Note: in Windows, if your file has a ".aftjs" extension it will be run and then the console it's been run into will
remain open for you to check the resulting log; if, on the other hand, the file has a ".aftxjs" extension, the
console window will be automatically closed after the script finishes running.

Environment variables

Most aspects of Syncplify.me AFT! can be managed and/or initialized by means of environment variables.
This is a "best practice" because environment variables are safe (secured by the operating system), don't
require to store values inside the executable's memory, and are compatible and supported by all operating
system, in all physical and virtual environments, including containers.

Here's a list of environment variables supported by Syncplify.me AFT!, together with their explanation:

SMVAFT_EK: typically initialized by the software installer, this is a random string from which AFT! derives the
encryption key to encrypt its own configuration files. It's important to understand that if you need to move
an instance of AFT! from one machine to another, you'll also need to make sure both machines have this
environment variable set to the exact same string value, otherwise the destination machine won't be able to
read/access its configuration, and the software will not work.

SVAFT_BI NDTQ this is the IP address AFT!'s HTTP server should bind to upon starting. If you don't
specify it, AFT! will bind to 127.0.0.1 by default, and therefore it will be only accessible from localhost.

SVAFT_PORT: this is the TCP port (1-65535) AFT!'s HTTP server will bind to upon starting. If you don't
specify it, AFT! will bind to port 44399.

SVAFT _CERT: this is the fully-qualified path to an X.509 certificate bundle file. This variable is optional. If
not defined, AFT! will use the default path, which is %COMMON_APP_DATA%
\Syncplify.me\AFTv1\certs\server.crt on Windows, or %
XDG_DATA_DIRS[0]%/Syncplify.me/AFTv1/certs/server.crt on Linux/POSIX.

SVAFT _KEY: this is the fully-qualified path to an X.509 certificate private key file. This variable is optional.
If not defined, AFT! will use the default path, which is%COMMON_APP_DATA%
\Syncplify.me\AFTv1\certs\server.key on Windows, or %

XDG_DATA _DIRS[0]%/Syncplify.me/AFTv1/certs/server.key on Linux/POSIX.

SVAFT_BODYLI M T: this is the maximum incoming request size that AFT!'s built-in HTTP server will
accept; if not specified, the default value is 32M. This is a string value, composed of a numerical prefix
followed by a letter indicating the unit of measurement. Example: 32M means 32 MegaBytes. Allowed
post-fix letters are K for KiloBytes, M for MegaBytes, G for GigaBytes, T for TeraBytes, and P for

PetaBytes.

SVAFT _RUNNERS: this is the maximum number of jobs/tasks that AFT! will execute concurrently... if you
start more than SMAFT_RUNNERS tasks, all tasks exceeding this number will be queued, and executed
later when one of the running tasks terminates and frees up system resources. This is an optional setting,
and its default value is 32. Please, also be aware of the fact that the free/evaluation edition of AFT! forces
this number to be always 1 (one) regardless of what you set in this environment variable.

The aft]S language

The aftJS language is like JavaScript, actually it is JavaScript, nearly 100% compatible with the ECMAS
specification, including strict mode and regular expressions, and with some ECMAG functionality as
well. Furthermore, and more importantly, it has several additional functions and methods specifically
designed to develop Managed File Transfer scripts.

Caveats:

The only known caveat at this time is that WeakMap maintains "hard" references to its values. This means
if a value references a key in a WeakMap or a WeakMap itself, it will not be garbage-collected until the
WeakMap becomes unreferenced. To illustrate this, see the following script:

{
var m = new WeakMap() ;

var key = {};
m set (key, {key: key});
[l or mset(key, key);

key = undefined; // The value will NOT becone garbage-collectable at this
poi nt
m = undefined; // But it will at this point

}
System requirements

Supported operating systems

e Windows: all versions from XP through Windows 10, including Windows Server and all R2 versions

e Linux: tested on Ubuntu, CentOS, RedHat, Debian (should work on other distributions as well) on both
x86 and Arm architectures

e MacOSX: coming soon
e Containers: Docker image coming soon

Minimum hardware requirements

e RAM: 512 MB
o Free disk space: 40 MB
e CPU cores: 1+

Options (for ALL client objects)

Options = {

St opOnTr ansfer Error /'l bool ean

Downl oadPol i cy /'l enum NeverOverwrite, Al waysOverwite,
Overwitel fDiffSize, OverwitelfNewer

Upl oadPol i cy /'l enum NeverOverwite, Al waysOverwrite,
Overwitel fDiffSize, OverwitelfNewer

OnDownl oadGr ant To [l string (usernane of a user to whom AFT! wil |

grant access to downl oaded file(s)
Adj ust Ti mneOnDownl oad /'l bool

Adj ust Ti meOnUpl oad /'l bool
Downl oadW t hTenpNane /'l bool
Upl oadW t hTenpNane /'l bool
Del et eSour ceAf t er Downl oad // bool
Del et eSour ceAfter Upl oad // bool

Ver si onedDownl oad /'l bool

Ver si onedUpl oad /'l bool

Ver si onsToKeepLocal [l integer - default: 3
Ver si onsToKeepRenot e /[l integer - default: 3
OTFE /'l bool

OTFEKey [l string

OTFEKeyFr onSecr et [l string

}

Every client object, regardless of the file transfer protocol it implements, will have anQpt i ons property
like the one described here above.
Here below you can find an explanation of what each one of such options means.

St opOnTransfer Error:iftrue, any upload or download operation will immediately terminate if a file
transfer error occurs, otherwise (if f al se) Syncplify.me AFT! will try to keep uploading/downloading the
remaining queued files; this property defaults to f al se.

Downl oadPol i cy is the policy that the client object will apply to all downloads, and specifically:

e Never Overw it e: if afile with the same name already exists on the local file system, it will not be
downloaded (this is the default value)

e Al waysOverw it e: all files will always be downloaded, even if it means that local files are going to
be overwritten

e Overwitel fDiffSize:ifalocalfile with the same name exists, the remote file will be downloaded
(overwriting the local one) only if the size is different

e OverwritelfNewer:ifalocal file with the same name exists, the remote file will be downloaded
(overwriting the local one) only if the remote file is more recent (looking at the last modification date)

Upl oadPol i cy is the policy that the client object will apply to all uploads, and specifically:

e NeverOverw it e: if afile with the same name already exists on the remote file server, it will not be
uploaded (this is the default value)

e Al waysOverwrite:allfiles will always be uploaded, even if it means that remote files are going to
be overwritten

e Overwitel fDiffSize:if aremote file with the same name exists, the local file will be uploaded
(overwriting the remote one) only if the size is different

e OverwritelfNewer: if aremote file with the same name exists, the local file will be uploaded
(overwriting the remote one) only if the local file is more recent (looking at the last modification date)

OnDownl oadGr ant To: when AFT! is running as a system service, all downloaded files will be owned by
"System" (on Windows) or "root" (on Linux/POSIX systems). If you specify this option, then AFT! will grant
access (in Windows) or ownership (in Linux/POSIX) to all downloaded files to theusername specified by
this option.

Adj ust Ti meOnDownl oad: if t r ue, the last modification time of each downloaded file will be adjusted to
match the last modification time of the original file on the remote file server; this property defaults tot r ue.

Adj ust Ti meOnUpl oad: if t r ue, the last modification time of each uploaded file will be adjusted to match
the last modification time of the original file on the local file system; this property defaults tot r ue.

Downl oadW t hTenpNane: if t r ue, all downloads will be operated using a temporary file, and only after
a successful and complete download the temporary file will be renamed to the actual original name of the
downloaded file. This property defaults to f al se.

Upl oadW t hTenpNane: if t r ue, all uploads will be operated using a temporary file, and only after a
successful and complete upload the temporary file will be renamed to the actual original name of the

uploaded file. This property defaults tof al se.

Del et eSour ceAf t er Downl oad: if t r ue, after a file has been successfully downloaded, the original file
(on the remote file server) is deleted, effectively turning the download into a "file move" operation from the
remote to the local side.

Del et eSour ceAf t er Upl oad: if t r ue, after a file has been successfully uploaded, the original file (on

the local file-system) is deleted, effectively turning the upload into a "file move" operation from the local to
the remote side.

Ver si onedDownl oad: if t r ue, and if the other options require the destination local file to be overwritten
by the one that's being downloaded, this option instructs AFT! to automatically keep the old version of the
same fileina" . ver" sub-directory of the current local directory. This property defaults to f al se.

Ver si onedUpl oad: if t r ue, and if the other options require the destination remote file to be overwritten
by the one that's being uploaded, this option instructs AFT! to automatically keep the old version of the
same fileina" . ver " sub-directory of the current remote directory. This property defaults to f al se.

Ver si onsToKeepLocal : used in conjunction with Ver si onedDownl oad, this property indicates the
number of older versions of each file that AFT! will keep in the local " . ver " sub-directory. Defaults to 3.

Ver si onsToKeepRenot e: used in conjunction with Ver si onedUpl oad, this property indicates the
number of older versions of each file that AFT! will keep in the remote" . ver " sub-directory. Defaults to
3.

OTFE: short for On-The-Fly-Encryption, this property indicated whether AFT! should encrypt files as they
are uploaded to a remote file server, and decrypt them as they are downloaded back to the local storage.
Defaults to f al se.

OTFEKey: a secret word, password or keyword, from which the encryption key will be derived, when the
OTFE property is setto t r ue. Please do not type your passwords or encryption keys in clear! Use
CGet Secr et instead, or - even better - use the OTFEKeyFr onSecr et property here below.

OTFEKeyFr onSecr et : the name of a stored secret (read more about secrets) to be used as seed to
derive the encryption key to be used by the On-The-Fly-Encryption algorithm when the OTFE property is
set to t r ue. If both the OTFEKeyFr onfSecr et and OTFEKey properties are specified, the

OTFEKeyFr onSecr et property prevails.

Example:

{
var scli = new SftpCient();
scli.Host = '"your.sftpserver.com 22';
scli.User = 'someusernane';
scli.KeyFile ="./ny_id.rsa';

scli.Options. Upl oadPol i cy = NeverOverwite;
scli.Options. Adj ust Ti mreOnUpl oad = fal se;
scli.Options. StopOnTransferError = true;
if (scli.Connect()) {

/1l performyour file transfers...

/11

...
scli.d ose();
}

scli = null

}

Syncplify.me AFT! Manual

Directory item
DirListltem= {

Narme /1 string, fully qualified path and file name (ex:
"/ docs/resune. docx")

Type /[l string "FILE" or "D R

Si ze /'l nunmber (64-bit integer)

TimeStanp // timestanp of the item in JavaScript "Date()" conpatible fornmat
}

Every call to a Li st Di r method of any AFT client object will produce an array as a result; each element
of such array is an object of Di r Li st | t emtype.

Once a resulting array has been obtained, you can use the typical JavaScript ways to iterate over it, and
check the various property of each one of its items.

Example 1 (one way to iterate over a directory list, using a f or cycle):

{
var scli = new SftpCient();
scli.Host = "your.sftpserver.com 22';
scli.User = 'sonmeusernane';
scli.KeyFile ='"./ny_id.rsa';

if (scli.Connect()) {

dirList = scli.ListDir('/docs');

for (var i = 0; i < dirList.length; i++) {
Log(dirList[i].Nare);

scli.d ose();

}

scli = null

}

Example 2 (a different way to iterate over a directory list, using f or Each):

{
var scli = new SftpCient();
scli.Host = '"your.sftpserver.com 22';
scli.User = 'someusernane';

scli.KeyFile ="./ny_id.rsa';
if (scli.Connect()) {
dirList = scli.ListDir('/docs');
dirList.forEach(myFunction);
function nyFunction(item index, array) {
Log(item Nane + ' [' + itemSize + ' bytes] [' + itemType + ']');

scli.d ose();

}

scli = null

}

Sorting a directory list (for all client objects)
function SortDir(dirList, sortBy, direction);

This function sorts (re-orders) a directory list previously retrieved by either one of the following client object
methods (regardless of which client object has generated the list):Li st Di r, Li stDirR, Li st Fi | es,

12 /66

ListFil esR

Here's an explanation of the parameters this function takes:
e dirList isaJavaScript array in which each item is of DirListltem type, typically this list is the result
of a call to a client method that retrieves a directory/file list, as explained here above
e sortByisastring parameter and can be either one of the following:
0 "nane" sorts the list by file name
O "si ze" sorts the list by file size
0 "tinme" sorts the list by the timestamp of each file
e directionisanoptional parameter; it can be either Ascendi ng or Descendi ng. If this parameter
is not specified, Ascendi ng will be assumed by default.

Example:

{
var scli = new SftpCient();
scli.Host = "your.sftpserver.com 22';
scli.User = 'sonmeusernane';
scli.KeyFile ='"./ny_id.rsa';

if (scli.Connect()) {

dirList = scli.ListDir('/docs', Al);

SortDir(dirList, "tinme", Descending); // sorts fromnewest to ol dest item
scli.d ose();

}

scli = null

}

AWS S3 client object
S3Client() // object constructor

This function creates and returns a new S3Cl i ent object, which is the AFT object that implements and
carries out all file transfers and related operations using Amazon's S3 protocol.

Here's the protocol-specific properties that you may have to initialize/configure before calling the
. Connect () method:

Regi on string
Bucket string
APl Keyl D string
APl KeySecr et string

APl KeySecr et FronSecret string
UseMet adat aWhenLi sti ng bool

Regi on: this is the AWS region, as specified in AWS' own documentation. For example ' us- east-1".

Bucket : this is the name of the S3 bucket that you have chosen and assigned to your bucket when you
have originally created it.

API Key| D: this is the APIKeyID that you have generated in your AWS account to access this bucket.

APl KeySecr et : every APIKeyID has a corresponding secret in your AWS account. This is such secret.
We do not recommend, though, that you write your secrets in clear in your script code, so either use the
Get Secr et function to populate this value, or use the APl KeySecr et Fr onSecr et property here below
(better choice).

APl KeySecr et Fr onSecr et : if you have stored your APl KeySecr et as aSyncplify.me AFT! secret
(read more about secrets) then you can set this property to the name of the secret in Syncplify.me AFT!'s

https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html

database; this is the safest choice.

UseMet adat aWhenLi st i ng: this property is by default set to f al se to optimize the speed of your
directory listing and file searching commands. Setting this property tot r ue will slow down directory lists
and file searches by a remarkable factor, but it will - in turn - enable the acquisition of the object's
metadata, which include the correct TimeStamp of the last modification date of the object. Unfortunately S3
doesn't return such information in the normal directory list, so this option necessarily needs to be set to

t r ue if your script is using the Adj ust Ti mreOnUpl oad or Adj ust Ti meOnDownl oad options. This is the
only way to make sure that the returned TimeStamp matches the custom TimeStamp you set, and not the
timestamp that AWS arbitrarily assigns to the object.

Please, keep in mind that once created you (the programmer) have the responsibility of freeing the
memory allocated by the object at the end of its use. You can easily do so by simply setting the object to
nul | once you're done using it (as shown in the example below).

Example:
{
var scli = new S3Client();
scli.Region = 'us-east-1';
scli.Bucket = 'yourbucketnane';
scli. APl Keyl D = ' whb8ye5485yedy7585' ;
scli. APl KeySecret FronSecret = 'your_aws_s3 secret _nane';

if (scli.Connect()) {
[l performyour file transfers...

I

I

scli.d ose();
}

scli = null

}

Azure Blob Storage client object

AzureCient() // object constructor

This function creates and returns a new Azur eCl i ent object, which is the AFT object that implements
and carries out all file transfers and related operations using Microsoft Azure Blob Storage protocol.

Here's the protocol-specific properties that you may have to initialize/configure before calling the
. Connect () method:

Cont ai ner string
Account Name string
Account Key string

Account KeyFr onfsecr et string
UseMet adat aWhenLi sting bool

Cont ai ner : this is the name of the Azure Blob container that you have chosen and assigned to your
container when you have originally created it (other cloud vendors call this "bucket" but in Azure's
terminology it's called "Container".

Account Narme: this is the Account Name for this Azure Storage Account.

Account Key: every AccountName has a corresponding secret AccountKey in your Azure account. This is
such key. We do not recommend, though, that you write your secrets in clear in your script code, so either
use the Get Secr et function to populate this value, or use the Account KeyFr onfSecr et property here
below (better choice).

Account KeyFr ontsecr et : if you have stored your Account Key as aSyncplify.me AFT! secret (read

more about secrets) then you can set this property to the name of the secret in Syncplify.me AFT!'s
database; this is the safest choice.

UseMet adat aWhenLi st i ng: this property is by default set to f al se to optimize the speed of your
directory listing and file searching commands. Setting this property tot r ue will slow down directory lists
and file searches by a remarkable factor, but it will - in turn - enable the acquisition of the object's
metadata, which include the correct TimeStamp of the last modification date of the object. Unfortunately
Azure doesn't return such information in the normal directory list, so this option necessarily needs to be set
to t r ue if your script is using the Adj ust Ti neOnUpl oad or Adj ust Ti meOnDownl oad options. This is
the only way to make sure that the returned TimeStamp matches the custom TimeStamp you set, and not
the timestamp that AWS arbitrarily assigns to the object.

Important note: as opposed to other cloud platforms, in Azure Blob Storage all folders are "virtual". They
exist only when there's at least one blob in them, and disappear by themselves when they're emptied. This
implies the following peculiarities in the Azur eCl i ent object behavior that differ from all other AFT! client
objects:

e MakeDi r always succeeds (returns t r ue) but truthfully it does absolutely nothing
e RenDir is not supported and always returnf al se (a non-existent object cannot be renamed)

Please, keep in mind that once created you (the programmer) have the responsibility of freeing the
memory allocated by the object at the end of its use. You can easily do so by simply setting the object to
nul I once you're done using it (as shown in the example below).

Example:

var cli = new AzureCient();
cli.Container = '"yourbl obcontai nernane';
cli.Account Name = 'your_account nane';
cli.Account KeyFronfSecret = 'your_secret_nane';
if (cli.Connect()) {

/1 performyour file transfers...

I

...

cli.d ose();

cli = null

}

Google Cloud Storage client object
GCsCient() // object constructor

This function creates and returns a new GCSCl i ent object, which is the AFT object that implements and
carries out all file transfers and related operations using Google Cloud Storage protocol.

Here's the protocol-specific properties that you may have to initialize/configure before calling the
. Connect () method:

Bucket string
Credential sFile string //optional
UseMet adat aWhenLi sting bool

Bucket : this is the name of the S3 bucket that you have chosen and assigned to your bucket when you
have originally created it.

Credenti al sFi | e: unlike other cloud vendors, Google Cloud exports OAuth2 credentials as a JSON file
(read this: https://cloud.google.com/docs/authentication/getting-started. Once you have this JSON file, you
have 2 options:

1. either you specify its full path in this Cr edent i al sFi | e property of the GCSClient object, or

https://cloud.google.com/docs/authentication/getting-started

2. you export its path as an environment variable named GOOGLE_APPLICATION_CREDENTIALS (if
you choose this option #2 you don't need to specify the file's path in your script, in fact Syncplify.me
AFT! will detect it automatically from your environment variables

UseMet adat aWhenLi st i ng: this property is by default set to f al se to optimize the speed of your
directory listing and file searching commands. Setting this property tot r ue will slow down directory lists
and file searches by a remarkable factor, but it will - in turn - enable the acquisition of the object's
metadata, which include the correct TimeStamp of the last modification date of the object. Unfortunately
Azure doesn't return such information in the normal directory list, so this option necessarily needs to be set
to t r ue if your script is using the Adj ust Ti neOnUpl oad or Adj ust Ti meOnDownl oad options. This is
the only way to make sure that the returned TimeStamp matches the custom TimeStamp you set, and not
the timestamp that AWS arbitrarily assigns to the object.

Please, keep in mind that once created you (the programmer) have the responsibility of freeing the
memory allocated by the object at the end of its use. You can easily do so by simply setting the object to
nul I once you're done using it (as shown in the example below).

Example (with explicit location of the credentials file):

var cli = new GCSClient();

cli.Bucket = 'yourbucketnane';

cli.CredentialsFile = 'C \\ My/Secret Fol der\\ Googl eCl oudCr eds. j son';
if (cli.Connect()) {

/'l performyour file transfers...

I

...
cli.d ose();
cli = null

}

Example (that assumes the existence of the GOOGLE_APPLICATION_CREDENTIALS environment
valiable):

{

var cli = new GCSClient();
cli.Bucket = 'yourbucketnane';

if (cli.Connect()) {

/1l performyour file transfers...

11

...
cli.d ose();
cli = null

}

SFTP client object
Sftpdient() // object constructor

This function creates and returns a new Sft pd i ent object, which is the AFT object that implements and
carries out all file transfers and related operations using the SETP protocol.

Here's the protocol-specific properties that you may have to initialize/configure before calling the
. Connect () method:

https://tools.ietf.org/html/draft-ietf-secsh-filexfer-13

Host string

User string
Pass string
PassFrontecret string
KeyFil e string

KeyFi | ePass string
KeyFi | eSecret string

Host : is the IP address or HostName and Port of the remote file server. Should always be specified in the
form | P: Port or Host : Port format. Examples: 192. 168. 2. 23: 22 or sft p. myconpany. com 22.

User : this is the username to access the remote server. If the server uses APIKey/APISecret instead of
Username/Password, this property will contain the APIKey.

Pass: this is the password to access the remote server. If the server uses APIKey/APISecret instead of
Username/Password, this property will contain the APISecret.

PassFrontecr et : Syncplify.me AFT! allows you to store secrets (strings) in its encrypted database, so
you don't have to put them in clear in your scripts. If you have stored a host's password (or APISecret) as
an encrypted secret in Syncplify.me AFT! you can reference it via PassFr onSecr et to retrieve it at
runtime without typing it in plain-text in your script. Read more about secrets.

KeyFi | e: if you specify the fully qualified path to a file containing your private key (in RSA format) then the
client object will attempt PKI authentication. Leave this property empty/blank to authenticate via simple
username and password.

KeyFi | ePass: if you have specified a KeyFi | e, and if the KeyFi | e is password-protected (encrypted),
this is the password that's necessary to decrypt such file.

KeyFi | eSecr et : if you have specified aKeyFi | e, and if the KeyFi | e is password-protected
(encrypted), this is the name of the secret object in Syncplify.me AFT!'s database that corresponds to the
KeyFi | e's password, so you don't have to type such password in clear in your script. Using "secrets" is
always the recommended method to specify passwords in Syncplify.me AFT! Readmore about secrets.

Please, keep in mind that once created you (the programmer) have the responsibility of freeing the
memory allocated by the object at the end of its use. You can easily do so by simply setting the object to
nul I once you're done using it (as shown in the example below).

Example:

{

var scli = new Sftpdient();
scli.Host = '"your.sftpserver.com 22';
scli.User = 'sonmeusernane';
scli.KeyFile ="./ny_id.rsa';

if (scli.Connect()) {
[l performyour file transfers...

/1

/1

scli.d ose();
}

scli = null

}
FTP(E/S) client object

FtpsCient() // object constructor

This function creates and returns a new Ft psC i ent object, which is the AFT object that implements and
carries out all file transfers and related operations using the FTP (plain), FTPS (implicit SSL/TLS), and

FTPES (explicit SSL/TLS) protocols.

Here's the protocol-specific properties that you may have to initialize/configure before calling the
. Connect () method:

Host string
User string
Pass string
PassFrontSecr et string
TLS TLSMbde // TLSNone || TLSExplicit || TLSInplicit

Trust | nsecureCerts bool ean

Host : is the IP address or HostName and Port of the remote file server. Should always be specified in the
form | P: Port or Host : Port format. Examples: 192. 168. 2. 23: 21 or ft p. myconpany. com 21.

User : this is the username to access the remote server. If the server uses APIKey/APISecret instead of
Username/Password, this property will contain the APIKey.

Pass: this is the password to access the remote server. If the server uses APIKey/APISecret instead of
Username/Password, this property will contain the APISecret.

PassFr ontecr et : Syncplify.me AFT! allows you to store secrets (strings) in its encrypted database, so
you don't have to put them in clear in your scripts. If you have stored a host's password (or APISecret) as
an encrypted secret in Syncplify.me AFT! you can reference it via PassFr onfSecr et to retrieve it at
runtime without typing it in plain-text in your script. Read more about secrets.

TLS: this indicates whether or not you wish this client object to use SSL/TLS network encryption, and how.

The possible values are:

e TLSNone: indicates that no encryption will be used, data will be transferred in clear (not
recommended)

e TLSExpl i cit: thisis the most common mode, the client object connects in clear, and immediately
switches to TLS using the STARTTLS command (this is also the only TLS mode that's actually a
recognized standard)

e TLSI npli cit:assumes that the FTP server is listening on a SSL/TLS socket, so the connection will
be established already encrypted (although this may sound more secure than TLSExplicit to the
untrained ear, it actually isn't even a recognized standard, but we do support it if you wish to use it)

Trust | nsecur eCert s: defaults to f al se, but you may setitto t r ue if you want the client object to
accept TLS certificates from servers that can't be verified or that flat out fail verification; this is useful only
when you know for sure that the FTP server is using a self-signed or otherwise invalid certificate but you
are absolutely sure you can still trust it

Please, keep in mind that once created you (the programmer) have the responsibility of freeing the
memory allocated by the object at the end of its use. You can easily do so by simply setting the object to
nul I once you're done using it (as shown in the example below).

Example:

{
var cli = new FtpsCient();
cli.Host = '"your.sftpserver.com21';
cli.User = 'soneusernane';
cli.PassFronecret = 'ny_secret_nane';

cli.TLS = TLSExplicit;
if (cli.Connect()) {
[l performyour file transfers...

/1
1.,
cli.d ose();
cli = null
}
Foreword

All AFT client objects, regardless of the protocol they implement (SFTP, FTP, S3, GCP, ...) implement the
same file-transfer-specific methods, so you don't have to worry about learning tons of different methods
and function names, and how to use them. All client objects behave the same, and all of them share the
same method interfaces, to provide you with a consistent programming experience across all supported file
transfer protocols.

Connect
function Connect ()
The Connect () function tries to connect and authenticate to the remote service.

If such connection and authentication are successful, this function returns t r ue, otherwise it returns
fal se.

Example:

{

var scli = new SftpCient();
scli.Host = '"your.sftpserver.com 22';
scli.User = 'sonmeusernane';
scli.KeyFile ="./ny_id.rsa';

if (scli.Connect()) {
/'l performyour file transfers...

/1
...
scli.d ose();
}
scli = null
}
Disconnect

function C ose()

The O ose() function of each AFT client object disconnects from the remote service.
If the disconnection was carried out gracefully, it returnst r ue, otherwise if some errors occurred during
disconnection it returns f al se.

Example:

{
var scli = new Sftpdient();
scli.Host = '"your.sftpserver.com 22';
scli.User = 'someusernane';
scli.KeyFile ="./ny_id.rsa';

if (scli.Connect()) {
[l performyour file transfers...

/1

...
scli.d ose();
}

scli = null

}

Directory list

function ListDir(directory, include)

The Li st Di r method retrieves the list of objects, typically files and other directories, contained inside the
specified directory.

The result of this function is returned as a JavaScript ar r ay of objects. Each objectis of DirLi st1tem
type.

Once a resulting array has been obtained, you can use the typical JavaScript ways to iterate over it, and
check the various property of each one of its items.

The i ncl ude parameter is used to determine what the Li st Di r command should return, and can have
either one of the following 3 values:

e Al l: all files and sub-directories insidedi r ect or y will be returned
e Fil esOnly: only files contained inside di r ect or y will be returned
e DirsOnly: only sub-directories inside di r ect or y will be returned

This function is NOT recursive, so only items that are contained inside di r ect or y will be returned. Items
contained in sub-directories of di r ect or y will not be included in the results. For a recursive version of this
function, please, look atLi st Di r R

Example 1 (one way to iterate over a directory list, using a f or cycle):

{
var scli = new SftpCient();
scli.Host = 'your.sftpserver.com 22';
scli.User = 'someusernane';
scli.KeyFile ="./ny_id.rsa';
if (scli.Connect()) {
dirList = scli.ListDir('/docs', Al);
for (var i = 0; i < dirList.length; i++) {
Log(dirList[i]. Nare);
scli.d ose();
}
scli = null
}

Example 2 (a different way to iterate over a directory list, using f or Each):

{
var scli = new SftpCient();
scli.Host = '"your.sftpserver.com 22';
scli.User = 'soneusernane';
scli.KeyFile ="./ny_id.rsa';

if (scli.Connect()) {
dirList = scli.ListDir('/docs', FilesOnly);
di rLi st.forEach(myFuncti on);
function nyFunction(item index, array) {
Log(itemName + ' [' + itemSize + ' bytes] [' + itemType + ']");

scli.d ose();

}

scli = null

}

Directory list (recursive)

function ListDirR(directory, include)

The Li st Di r Rmethod retrieves the list of objects, typically files and other directories, contained inside
the specified directory, and all of its sub-directories.

The result of this function is returned as a JavaScript ar r ay of objects. Each objectisof DirLi st1tem
type.

Once a resulting array has been obtained, you can use the typical JavaScript ways to iterate over it, and
check the various property of each one of its items.

The i ncl ude parameter is used to determine what the Li st Di r Rcommand should return, and can have
either one of the following 3 values:

e Al l: all files and sub-directories insidedi r ect or y (and inside its sub-directories) will be returned
e Fil esOnly: only files contained inside di r ect or y (and inside its sub-directories)will be returned
e DirsOnl y: only sub-directories inside di r ect or y (and inside its sub-directories)will be returned

This function is recursive, therefore it will return all matching items from di r ect or y as well as from all of
di r ect or y's sub-directories.

Example 1 (one way to iterate over a directory list, using a f or cycle):

{
var scli = new SftpCient();
scli.Host = 'your.sftpserver.com 22';
scli.User = 'someusernane';
scli.KeyFile ="./ny_id.rsa';
if (scli.Connect()) {
dirList = scli.ListDirR('/docs', Al);
for (var i = 0; i < dirList.length; i++) {
Log(dirList[i]. Nare);
scli.d ose();
}
scli = null
}

Example 2 (a different way to iterate over a directory list, using f or Each):

{
var scli = new SftpCient();
scli.Host = '"your.sftpserver.com 22';
scli.User = 'soneusernane';
scli.KeyFile ="./ny_id.rsa';

if (scli.Connect()) {
dirList = scli.ListDirR('/docs', FilesOnly);
di rLi st.forEach(myFuncti on);
function nyFunction(item index, array) {
Log(itemName + ' [' + itemSize + ' bytes] [' + itemType + ']");

scli.d ose();

}

scli = null

}

Search for files

function ListFiles(directory, mask)

The Li st Fi | es method retrieves the list of files (not sub-directories) contained inside the specified
directory.

The result of this function is returned as a JavaScript ar r ay of objects. Each objectisof DirLi st1tem
type.

Once a resulting array has been obtained, you can use the typical JavaScript ways to iterate over it, and
check the various property of each one of its items.

The di r ect or y parameter must specify an existing directory.
The mask parameter must specify to file-mask to match while searching, wildcards are supported (for
example: *. docx).

This function is NOT recursive, so only files that are contained inside di r ect or y will be returned. Files
contained in sub-directories of di r ect or y will not be included in the results. For a recursive version of this
function, please, look atLi st Fi | esR.

Example 1 (one way to iterate over a directory list, using a f or cycle):

{

var scli = new SftpCient();

scli.Host = 'your.sftpserver.com 22';
scli.User = 'someusernane';

scli.KeyFile ="./ny_id.rsa';

if (scli.Connect()) {

dirList = scli.ListFiles('/docs', '*.docx');
for (var i = 0; i < dirList.length; i++) {

Log(dirList[i].Name);

scli.d ose();

}

scli = null

}

Example 2 (a different way to iterate over a directory list, using f or Each):

{
var scli = new SftpCient();
scli.Host = '"your.sftpserver.com 22';
scli.User = 'soneusernane';
scli.KeyFile ="./ny_id.rsa';
if (scli.Connect()) {
dirList = scli.ListFiles('/docs', '*.xlsx");

di rLi st.forEach(myFuncti on);
function nyFunction(item index, array) {
Log(itemName + ' [' + itemSize + ' bytes] [' + itemType + ']");

scli.d ose();

}

scli = null

}

Search for files (recursive)

function ListFilesR(directory, mask)

The Li st Fi | esRmethod retrieves the list of files (not sub-directories) contained inside the specified
directory and all of its sub-directories.

The result of this function is returned as a JavaScript ar r ay of objects. Each objectisof DirLi st1tem
type.

Once a resulting array has been obtained, you can use the typical JavaScript ways to iterate over it, and
check the various property of each one of its items.

The di r ect or y parameter must specify an existing directory.
The mask parameter must specify to file-mask to match while searching, wildcards are supported (for
example: *. docx).

This function is recursive, therefore it will return all matching files from di r ect or y as well as from all of
di r ect or y's sub-directories.

Example 1 (one way to iterate over a directory list, using a f or cycle):

{
var scli = new SftpCient();
scli.Host = '"your.sftpserver.com 22';
scli.User = 'someusernane';
scli.KeyFile ="./ny_id.rsa';

if (scli.Connect()) {

dirList = scli.ListFilesR('/docs', '*.docx');
for (var i = 0; i < dirList.length; i++) {
Log(dirList[i]. Nare);

scli.d ose();

}

scli = null

}

Example 2 (a different way to iterate over a directory list, using f or Each):

{
var scli = new SftpCient();
scli.Host = '"your.sftpserver.com 22';
scli.User = 'soneusernane';
scli.KeyFile ="./ny_id.rsa';
if (scli.Connect()) {
dirList = scli.ListFilesR('/docs', '*.xlsx');

di rLi st.forEach(myFuncti on);
function nyFunction(item index, array) {
Log(itemName + ' [' + itemSize + ' bytes] [' + itemType + ']");

scli.d ose();

}

scli = null

}

File/directory existence and metadata

function Stat(renoteObj)

Every client object has a method called Stat which tries to retrieve information about a remote object (file
or directory) and, in doing so, checks whether such object exists or not.

This method always returns an object with the following structure:

Valid bool
Exi st s bool
St at DirListltem

}

Here's an example of a fully populated object of the above type.

Valid : true,
Exists : true,
St at A

Nane: "/docs/budget. xI sx",
Type: "FILE",

Si ze: 526546,

Ti meSt anp: 1576095950

}
}

Val i d istrue whenthe. St at command has returned valid information. Does not necessarily mean that
the object exists, only that the command was executed without issues.

Exi stsistrue if renot eCbj (a file or directory on the remote file server) exists.

If and only if Exi st s is t r ue, then the object's St at property will contain meaningful information about
the analyzed file/directory.

Example:

{

var scli = new SftpCient();
scli.Host = 'your.sftpserver.com 22';
scli.User = 'soneusernane';
scli.KeyFile ="./ny_id.rsa';

if (scli.Connect()) {
[l performyour file transfers...
I/
var res = scli.Stat('"');
if ((res.Valid) && (res.Exists)) {
Log(' The file exists and its size is '+res. Stat. Size);

}

...
scli.d ose();
}

scli = null

}

Make a directory

function MakeDir(directory)

The MakeDi r function creates a directory. It also creates, if needed, all directories in the path into which
the leaf directory is in. Suppose, for example, that a "docs" directory exists in the root of the remote file
server, and you MakeDi r (' / docs/ per sonal / spreadsheet s'), the MakeDir function will proceed to
create the "personal” directory inside the "docs" directory, and then the "spreadsheets” directory inside the
"personal” directory, all with a single function call.

Example:

{
var scli = new Sftpdient();
scli.Host = '"your.sftpserver.com 22';
scli.User = 'someusernane';
scli.KeyFile ="./ny_id.rsa';
if (scli.Connect()) {
[l performyour file transfers...
...
scli.MkeDir('/docs/ personal / spreadsheets');
...
scli.d ose();
}
scli = null
}

Rename a directory
function RenDir(currentDi rNanme, newDi r Nane)
The RenDi r function renames a directory. Thecur r ent Di r Name directory must exist, and the

newDi r Nane directory must not exist, otherwise this command will fail and returnf al se. If the command
succeeds, and the directory is successfully renamed, then this function will returnt r ue.

Example:

{

var scli = new SftpCient();
scli.Host = "your.sftpserver.com 22';
scli.User = 'soneusernane';
scli.KeyFile ="./ny_id.rsa';

if (scli.Connect()) {
/1l performyour file transfers...

I

scli.RenDir('/docs/yours', '/docs/mne');
...

scli.d ose();

}

scli = null

}

Delete a directory
function Del Dir(directory)
The Del Di r function deletes a directory, if it's empty.

This function returns t r ue if the directory was successfully deleted. If the directory isn't empty, or if for
any other reason it could not be deleted, this function returns f al se.

Syncplify.me AFT! Manual

Example:

{

var scli = new Sftpdient();
scli.Host = '"your.sftpserver.com 22';
scli.User = 'soneusernane';
scli.KeyFile ="./ny_id.rsa';

if (scli.Connect()) {
[l performyour file transfers...

...
scli.DelDir('/docs/sonme_enpty directory');
...
scli.d ose();
}
scli = null
}

Delete a directory tree

function Del Tree(directory)

The Del Tr ee function deletes a directory tree, by recursively deleting also all files and sub-directories in
it.

This function returns t r ue if the directory tree was successfully deleted. If for any other reason it could not
be deleted, this function returns f al se.

Example:

{

var scli = new SftpCient();
scli.Host = "your.sftpserver.com 22';
scli.User = 'someusernane';
scli.KeyFile ="./ny_id.rsa';

if (scli.Connect()) {
/1l performyour file transfers...

...
scli.Del Tree('/docs/sone_directory');
...
scli.d ose();
}
scli = null
}
Delete a file

function Del et e(what)

The Del et e method attempts to delete a file from the remote server, and returns t r ue if deletion was
successful or f al se if it wasn't.

27166

Example:

{
var scli = new Sftpdient();
scli.Host = '"your.sftpserver.com 22';
scli.User = 'soneusernane';
scli.KeyFile ="./ny_id.rsa';

if (scli.Connect()) {
[l performyour file transfers...

...
scli.Del ete('/docs/sonme_docunent. docx');
...
scli.d ose();
}
scli = null

Rename/move an object

function Renane(what, toWere)

The Renane function renames or moves a file system object (file or folder) on the remote file server. It
returns t r ue if the object is successfully renamed/moved, otherwise it returnsf al se.

Example:

{

var scli = new SftpCient();
scli.Host = "your.sftpserver.com 22';
scli.User = 'someusernane';
scli.KeyFile ="./ny_id.rsa';

if (scli.Connect()) {
/1l performyour file transfers...

/11
scli . Renane('/docs/bio.docx', '/docs/bio.docx. bak');
11
scli.d ose();
}
scli = null
}
Upload files

function Upl oad(what, toWere)

The Upl oad function upload the file(s) specified in the what parameter (supports wildcards) to the

t oWher e destination directory on the remote file server. This function is NOT recursive, therefore when
using wildcards, this function will NOT upload matching files from sub-directories of the directory specified
in the what parameter. For a recursive version of this function see theUpl oadR function.

Example:

{
var scli = new Sftpdient();
scli.Host = '"your.sftpserver.com 22';
scli.User = 'soneusernane';
scli.KeyFile ="./ny_id.rsa';

if (scli.Connect()) {
[l performyour file transfers...

...

scli.Upload('./docs/*.docx', '/archivel/docs');
...

scli.d ose();

}

scli = null

Upload file with path
function Upl oadWthPat h(what, toWere, skip)

The Upl oadW t hPat h function upload the file(s) specified in the what parameter (supports wildcards) to
the t oWher e destination directory on the remote file server, retaining the path of the original file and
recreating it if necessary. The ski p parameter is an integer number that instructs the function to skip the
first N directories of the original path when rebuilding it into the destination path. This function is NOT
recursive, therefore when using wildcards, this function will NOT upload matching files from sub-directories
of the directory specified in the what parameter. For a recursive version of this function see the

Upl oadW t hPat hR function.

Example:

{

var scli = new SftpCient();
scli.Host = 'your.sftpserver.com 22';
scli.User = 'sonmeusernane';
scli.KeyFile ="./ny_id.rsa';

if (scli.Connect()) {

[l performyour file transfers...

...

scli. Upl oadWthPat h('./data/docs/*.docx', '/archive', 0); // uploads files
to /archive/datal/ docs

...

scli. Upl oadWthPat h('./data/docs/*.docx', '/archive', 1); // skip=1 neans
upl oads files to /archivel/docs

/1

scli.d ose();
}

scli = null

}

Upload files recursively
function Upl oadR(what, toWere)
The Upl oadR function upload the file(s) specified in the what parameter (supports wildcards) to the

t oWher e destination directory on the remote file server. This function is recursive, therefore when using
wildcards, this function will also upload all matching files from sub-directories of the directory specified in

the what parameter.

Example:

{

var scli = new SftpCient();
scli.Host = '"your.sftpserver.com 22';
scli.User = 'someusernane';
scli.KeyFile ="./ny_id.rsa';

if (scli.Connect()) {
[l performyour file transfers...

...

scli.Upl oadR('./docs/*.docx', '/archivel/docs');
...

scli.d ose();

}

scli = null

}

Upload files with path recursively
function Upl oadWt hPat hR(what, toWere, skip)

The Upl oadW t hPat hR function upload the file(s) specified in the what parameter (supports wildcards)
to the t oWher e destination directory on the remote file server, retaining the path of the original file and
recreating it if necessary. The ski p parameter is an integer number that instructs the function to skip the
first N directories of the original path when rebuilding it into the destination path. This function is recursive,
therefore when using wildcards, this function will also upload all matching files from sub-directories of the
directory specified in the what parameter.

Example:

{
var scli = new SftpCient();
scli.Host = 'your.sftpserver.com 22';
scli.User = 'sonmeusernane';
scli.KeyFile ="./ny_id.rsa';

if (scli.Connect()) {

[l performyour file transfers...

...

scli . Upl oadWt hPat hR(' . / dat a/ docs/ *. docx', '/archive', 0); // uploads files
to /archive/data/docs and subfol ders

...

scli. Upl oadW t hPat hR(' ./ dat a/ docs/ *.docx', '/archive', 1); // skip=1l nmeans
upl oads files to /archive/docs and subfol ders

/11

scli.d ose();
}

scli = null

}

Download files
function Downl oad(what, toWhere)

The Downl oad function download the file(s) specified in the what parameter (supports wildcards) from
the remote file server to the t oWher e destination directory on the local file system. This function is NOT

recursive, therefore when using wildcards, this function will NOT download matching files from sub-
directories of the directory specified in the what parameter. For a recursive version of this function see the
Downl oadR function.

Example:

{

var scli = new SftpCient();
scli.Host = '"your.sftpserver.com22';
scli.User = 'sonmeusernane';
scli.KeyFile ='"./ny_id.rsa';

if (scli.Connect()) {
[l performyour file transfers...

11
scli. Downl oad('/archivel/docs/*.docx', './docs');
11
scli.d ose();
}
scli = null

}

Download files with path
function Downl oadW t hPat h(what, toWhere)

The Downl oadW t hPat h function download the file(s) specified in the what parameter (supports
wildcards) from the remote file server to the t oWher e destination directory on the local file system,
retaining the path of the original file and recreating it if necessary. The ski p parameter is an integer
number that instructs the function to skip the first N directories of the original remote path when rebuilding it
into the local destination path. This function is NOT recursive, therefore when using wildcards, this function
will NOT download matching files from sub-directories of the directory specified in thewhat parameter.
For a recursive version of this function see the Downl oadW t hPat hR function.

Example:

{
var scli = new SftpCient();
scli.Host = '"your.sftpserver.com 22';
scli.User = 'sonmeusernane';
scli.KeyFile ="./ny_id.rsa';

if (scli.Connect()) {
/'l performyour file transfers...

...

scli.Downl oadWthPat h('/arc/docs/*.docx', './here', 0); // downloads files
to ./herelarc/docs

...

scli.Downl oadWthPat h('/arc/docs/*.docx', './here', 1); // skip=1 downl oads
files to ./ here/docs

...

scli.d ose();

scli = null
}

Download files recursively
function Downl oadR(what, toWere)

The Downl oadR function download the file(s) specified in the what parameter (supports wildcards) from
the remote file server to the t oWher e destination directory on the local file system. This function is

recursive, therefore when using wildcards, this function will also download matching files from sub-
directories of the directory specified in the what parameter.

Example:

{
var scli = new SftpCient();
scli.Host = "your.sftpserver.com 22';
scli.User = 'sonmeusernane';
scli.KeyFile ='"./ny_id.rsa';

if (scli.Connect()) {
[l performyour file transfers...

...

scli . Downl oadR(' /archi ve/ docs/*. docx', './docs');
...

scli.d ose();

}

scli = null

}

Download files with path recursively
functi on Downl oadWt hPat hR(what, toWere)

The Downl oadW t hPat hR function download the file(s) specified in the what parameter (supports
wildcards) from the remote file server to the t oWher e destination directory on the local file system,
retaining the path of the original file and recreating it if necessary. The ski p parameter is an integer
number that instructs the function to skip the first N directories of the original remote path when rebuilding it
into the local destination path. This function is recursive, therefore when using wildcards, this function will
also download matching files from sub-directories of the directory specified in thewhat parameter.

Example:

{
var scli = new SftpCient();
scli.Host = 'your.sftpserver.com 22';
scli.User = 'sonmeusernane';
scli.KeyFile ="./ny_id.rsa';

if (scli.Connect()) {
/'l performyour file transfers...

...

scli. Downl oadWt hPat hR(' /arc/ docs/*.docx', './here', 0); // downloads files
to ./herel/arc/docs and subfol ders

...

scli . Downl oadWt hPat hR('/arc/docs/*.docx', './here', 1); // skip=1 downl oads
files to ./here/docs and subfol ders

...

scli.d ose();

scli = null
}

Create a remote file system watcher
Renot eWat cher (cl i ent Cbject) // object constructor
This function creates and returns a new Remote Watcher object using the specified client object remote

connection. This object can be used later in the script to be constantly notified of the desired changes to
the observed (watched) directory/folder (and optionally its sub-folders) on the remote file server.

Syncplify.me AFT! Manual

Example:

{
Consol eFeedback = true;
var scli = new SftpCient();
scli.Host = 'your.sftpserver.com 22';
scli.User = 'sone_usernane';

scli.PassFronSecret = 'nane_of the_secret password';
if (scli.Connect()) {

wat chr = new Renot eWat cher (scli);

wat chr. Wat chDir (' / Docs', true);
wat chr. Noti f yRemove = fal se;
wat chr. I ncl usi onFil ter ["*.docx", "*.xlsx']
wat chr . Excl usi onFil ter ['sonme_private_docunent. docx']
wat chr. Start();
while (true) {

Sl eep(30000) ;

if (HaltSignal Received()) {

br eak;

}

evt = watchr. Events()

if (evt.length > 0) {

for (var i = 0; i < evt.length; i++) {
if (evt[i].Event == 'CREATE) {
scli.Downl oadWthPath(evt[i].Object, 'C\\MLocal Copies', 0);
}
}

}

scli.d ose();

scli = null;

}
Watch a directory for changes

function WatchDir(path, recursive)

This RemoteWatcher method adds a directory/folder to the list of directories/folders "watched" by the file
system watcher.

The pat h parameter is a string, and specifies a directory to be watched.

The recursive parameter is a boolean, and specifies whether or not the RemoteWatcher should also watch
all sub-folders of the specified folder.

Example:

{
Consol eFeedback = true;
var scli = new SftpCient();
scli.Host = 'your.sftpserver.com 22';
scli.User = 'some_usernane';

scli.PassFronSecret = 'nane_of the_secret _password';

if (scli.Connect()) {

wat chr = new Renot eWat cher (scli);

wat chr. WatchDir (' /Docs', true);

wat chr. Noti f yRenove = fal se;

wat chr. I ncl usi onFilter ["*.docx", "*.xlsx']

wat chr . Excl usi onFil ter ['sonme_private_docunent. docx']
wat chr. Start();

while (true) {

33/66

Syncplify.me AFT! Manual

Sl eep(30000) ;

if (HaltSignal Received()) {
br eak;

}

evt = watchr. Events()

if (evt.length > 0) {

for (var i = 0; i < evt.length; i++) {
if (evt[i].Event == "'CREATE) {
scli.Downl oadWthPath(evt[i].Object, 'C \\MLocal Copies', 0);
}
}

}

scli.d ose();

scli = null;

}
Choose events to watch

.NotifyCreate // boolean - default: true - triggered when an object is created
.NotifyRenove // boolean - default: true - triggered when an object is renoved
.NotifyMudify // boolean - default: true - triggered when an object is

nodi fi ed

These 3 properties of the RemoteWatcher object determine which remote file-system events will be
included in the watcher's notifications and which ones won't. By default they are all set to true, so unless
you want to disable some of them, you don't need to set/reset them in your code.

Example:
{
Consol eFeedback = true;
var scli = new SftpCient();
scli.Host = '"your.sftpserver.com 22';
scli.User = 'some_usernane';
scli.PassFronSecret = 'nane_of the_secret _password';

if (scli.Connect()) {
wat chr = new Renot eWat cher (scli);
wat chr. WatchDir (' /Docs', true);
wat chr. Noti f yRenove = fal se;
wat chr.lnclusionFilter = ['*.docx', '*.xlsx"']
wat chr. Excl usionFilter = ['sone_private docunent. docx']
wat chr. Start();
while (true) {

Sl eep(30000) ;

if (HaltSignal Received()) {

br eak;

}

evt = watchr. Events()

if (evt.length > 0) {

for (var i =0; i < evt.length; i++) {
if (evt[i].Event == '"CREATE) {
scli.Downl oadWthPath(evt[i].Cbject, 'C\\MLocal Copies', 0);
}
}
}
scli.d ose();
scli = null;
}

34 /66

Syncplify.me AFT! Manual

Delay notifications
. Del ayBySeconds // integer numnber

This property of the RemoteWatcher object causes a delay of the specified number of seconds to all file-
system event notifications. This can be extremely useful to allow the OS enough time to complete file
operations before the RemoteWatcher notifies our script and triggers the execution of a file transfer
operation, for example.

Example:
{
Consol eFeedback = true;
var scli = new SftpCient();
scli.Host = "your.sftpserver.com 22';
scli.User = 'sone_usernane';
scli.PassFronSecret = 'nane_of the_secret password';

if (scli.Connect()) {

wat chr = new Renot eWat cher (scli);

wat chr. WatchDir (' /Docs', true);

wat chr . Del ayBySeconds = 25;

wat chr. I ncl usi onFil ter ["*.docx", "*.xlsx']
wat chr . Excl usi onFil ter ['some_private_docunent. docx']
wat chr. Start();
while (true) {

Sl eep(30000) ;

if (HaltSignal Received()) {

br eak;

}

evt = watchr. Events()

if (evt.length > 0) {

for (var i = 0; i < evt.length; i++) {
if (evt[i].Event == "'CREATE) {
scli.Downl oadWthPath(evt[i].Object, 'C \\MLocal Copies', 0);
}
}
}
scli.d ose();
scli = null;
}

Inclusion/exclusion filters

.InclusionFilter // array of strings
.ExclusionFilter // array of strings

These two properties instruct the RemoteWatcher to include or exclude specific file-masks.
By default, | ncl usionFilter is['*'], soitincludes everything, and Excl usi onFi | t er is empty, so
nothing will be excluded.

Example:

{
Consol eFeedback = true;
var scli = new SftpCient();
scli.Host = 'your.sftpserver.com 22';
scli.User = 'sonme_usernane';

35/66

Syncplify.me AFT! Manual

scli.PassFronSecret = 'nane_of the_secret password';
if (scli.Connect()) {

wat chr = new Renot eWat cher (scli);

wat chr. Wat chDir (' / Docs', true);

wat chr . Del ayBySeconds = 25;

wat chr . | ncl usi onFi | ter ["*.docx"', '"*.xlsx']

wat chr . Excl usi onFi | ter ['sonme_private docunent. docx']
wat chr. Start();
while (true) {

Sl eep(30000) ;

if (HaltSignal Received()) {

br eak;

}

evt = watchr. Events()

if (evt.length > 0) {

for (var i = 0; i < evt.length; i++) {
if (evt[i].Event == "'"CREATE) {
scli.Downl oadWthPath(evt[i].Object, 'C \\MLocal Copies', 0);
}
}
}
scli.d ose();
scli = null;
}

Start the remote watcher
function Start ()
This RemoteWatcher method triggers the asynchronous execution of the underlying remote file-system

watcher, so that your script can subsequently poll it for pending events. No notification will be available to
the script prior to calling this method.

Example:
{
Consol eFeedback = true;
var scli = new SftpCient();
scli.Host = 'your.sftpserver.com 22';
scli.User = 'some_usernane';
scli.PassFronSecret = 'nane_of the_secret _password';

if (scli.Connect()) {
wat chr = new Renot eWat cher (scli);
wat chr. WatchDir (' /Docs', true);
wat chr . Del ayBySeconds = 25;
wat chr.lnclusionFilter = ['*.docx', '*.xlsx"']
wat chr. Excl usionFilter = ['sone_private docunent. docx']
wat chr. Start () ;
while (true) {

Sl eep(30000) ;

if (HaltSignal Received()) {

br eak;

}

evt = watchr. Events()

if (evt.length > 0) {

for (var i =0; i < evt.length; i++) {
if (evt[i].Event == '"CREATE) {
scli.Downl oadWthPath(evt[i].Cbject, 'C\\MLocal Copies', 0);
}
}

36 /66

Syncplify.me AFT! Manual

}
scli.d ose();

scli = null;

}
Poll the remote watcher event queue

function Events() // returns an array of event objects

Each event object is defined as follows:

TimeStanp JSTine // tinestanp of when the event happened (in JavaScript Date()
conpati ble formt)

Event string // file systemevent as string: CREATE, REMOVE, MODIFY

oj ect string // the renpte object (file or directory) affected by Event

This FsWatcher method is designed to be called within the scope of an endless loop, to keep the script
running forever (unless terminated by an admin or an OS signal). Each time this method is called, it returns
an array of pending, to-be-handled, file system naotifications. Every call to this method will also clear the
pending notifications, so all events that are left un-handled will not be notified again.

Example:
{
Consol eFeedback = true;
var scli = new SftpCdient(scli);
scli.Host = 'your.sftpserver.com 22';
scli.User = 'some_usernane';
scli.PassFronSecret = 'nane_of the_secret _password';

if (scli.Connect()) {
wat chr = new Renot eWat cher () ;
wat chr. WatchDir (' /Docs', true);
wat chr . Del ayBySeconds = 25;
wat chr.lnclusionFilter = ['*.docx', '*.xlsx"']
wat chr. Excl usionFilter = ['sone_private docunent. docx']
wat chr. Start();
while (true) {

Sl eep(30000) ;

if (HaltSignal Received()) {

br eak;

evt = watchr. Events()

if (evt.length > 0) {

for (var i = 0; i < evt.length; i++) {
if (evt[i].Event == "'CREATE) {
scli . Downl oadWthPat h(evt[i].Cbject, 'C\\MLocal Copies', 0);
}

}

}

scli.d ose();

scli = null;

}
Create a local file system watcher

FsWat cher () // object constructor

This function creates and returns a new File-System Watcher object. This object can be used later in the
script to be constantly notified of the desired changes to the observed (watched) directory/folder, and

37166

Syncplify.me AFT! Manual

optionally its sub-folders.

Example:
{
Consol eFeedback = true;
var scli = new SftpCient();
scli.Host = 'your.sftpserver.com 22';
scli.User = 'sonme_usernane';
scli.PassFronSecret = 'nane_of the_secret password';

if (scli.Connect()) {
wat chr = new FsWat cher () ;
wat chr. WatchDir (' C:\\Docs', true);
wat chr. Noti f yRename = fal se;
wat chr.InclusionFilter = ['*.docx', '*.xlsx"]
wat chr. Excl usionFilter = ['sone_private_docunent. docx']
wat chr. Start();
while (true) {

Sl eep(1000) ;

if (Halt$Signal Received()) {

br eak;

}

evt = watchr. Events()

if (evt.length > 0) {

for (var i =0; i < evt.length; i++) {
if (evt[i].Event == "WRITE') {
scli.Upl oadWthPat h(evt[i].Object, '/realtinebackup', 0);
}
}

}

scli.d ose();

scli = null;

}
Watch a directory for changes

function WatchDir(path, recursive)

This FsWatcher method adds a directory/folder to the list of directories/folders "watched" by the file
system watcher.

The pat h parameter is a string, and specifies a directory to be watched.

The recursive parameter is a boolean, and specifies whether or not the FsWatcher should also watch all
sub-folders of the specified folder.

Example:
{
Consol eFeedback = true;
var scli = new SftpCient();
scli.Host = '"your.sftpserver.com 22';
scli.User = 'sonme_usernane';
scli.PassFronSecret = 'nane_of _the_secret_password';

if (scli.Connect()) {

wat chr = new FsWat cher () ;

wat chr. WatchDir (' C:\\ Docs', true);

wat chr. Noti f yRenane = fal se;

wat chr. Il nclusionFilter = ['*.docx', '*.xlsx']

wat chr. Excl usionFilter = ['sone_private_docunent. docx']

38/66

}

Syncplify.me AFT! Manual

wat chr. Start ();

while (true) {

Sl eep(1000) ;

if (HaltSignal Received()) {
br eak;

}

evt = watchr. Events()

if (evt.length > 0) {

for (var i =0; i < evt.length; i++) {
if (evt[i].Event == "WRITE) {
scli.Upl oadWthPat h(evt[i].Object, '/realtinebackup', 0);
}
}
}
scli.dose();
scli = null;

Choose events to watch

.NotifyCreate // boolean - default: true - triggered when an object
.NotifyWite // boolean - default: true - triggered when an object
.NotifyRenove // boolean - default: true - triggered when an object
.NotifyRename // boolean - default: true - triggered when an object
Noti fyChnod // boolean - default: true - triggered when an object's netadata

s changed

is
is
is
is

created
witten
renoved
renaned

These 5 properties of the FsWatcher object determine which file system events will be included in the
watcher's notifications and which ones won't. By default they are all set to true, so unless you want to
disable some of them, you don't need to set/reset them in your code.

Example:

{

Consol eFeedback = true;
var scli = new Sftpdient();
scli . Host "your. sftpserver.com 22';
scli. User 'sone_user nane' ;
scli.PassFronSecret = 'nane_of the secret password';
if (scli.Connect()) {
wat chr = new FsWat cher () ;
wat chr. WatchDir (' C:\\ Docs', true);
wat chr. Noti fyRenane = false; // will NOT notify Fil e-Renane events
wat chr. Il nclusionFilter = ['"*.docx', '*.xlsx']
wat chr. Excl usionFilter = ['sone_private_docunent. docx']
wat chr. Start ();
while (true) {
Sl eep(1000);
if (HaltSignal Received()) {
br eak;
}
evt = watchr. Events()
if (evt.length > 0) {

for (var i = 0; i < evt.length; i++) {
if (evt[i].Event == "WRITE') {
scli.Upl ocadWthPat h(evt[i].Object, '/realtinebackup', 0);
}

}

}

}

39/66

Syncplify.me AFT! Manual

scli.d ose();

scli = null;

}
Delay notifications
. Del ayBySeconds // integer nunber

This property of the FsWatcher object causes a delay of the specified number of seconds to all file-system
event notifications. This can be extremely useful to allow the OS enough time to complete file operations
before the FsWatcher notifies our script and triggers the execution of a file transfer operation, for example.

Example:

{
Consol eFeedback = true;
var scli = new SftpCient();
scli.Host = '"your.sftpserver.com 22';
scli.User = 'some_usernane';

scli.PassFronBSecret = 'nane_of the_secret_password';
if (scli.Connect()) {

wat chr = new FsWat cher () ;

wat chr. WatchDir (' C:\\ Docs', true);

wat chr . Del ayBySeconds = 10 // delay all notifications by 10 seconds

wat chr. | ncl usi onFil ter
wat chr . Excl usi onFil ter
wat chr. Start();
while (true) {

Sl eep(1000);

if (HaltSignal Received()) {

br eak;

}

evt = watchr. Events()

if (evt.length > 0) {

["*.docx", "*.xlsx']
['sonme_private _docunent. docx']

for (var i =0; i < evt.length; i++) {
if (evt[i].Event == "WRITE') {
scli.Upl oadWthPat h(evt[i].Object, '/realtinebackup', 0);
}
}

}
scli.d ose();

scli = null;

}
Inclusion/exclusion filters

.InclusionFilter // array of strings
.ExclusionFilter // array of strings

These two properties instruct the FsWatcher to include or exclude specific file-masks.

By default, I ncl usionFilter is['*'], soitincludes everything, and Excl usi onFi | t er is empty, so

nothing will be excluded.

Example:

Consol eFeedback = true;

40/ 66

Syncplify.me AFT! Manual

var scli = new SftpCient();

scli.Host = '"your.sftpserver.com 22';

scli.User = 'some_usernane';

scli.PassFronSecret = 'nane_of the_secret _password';

if (scli.Connect()) {

wat chr = new FsWat cher () ;

wat chr. WatchDir (' C:\\ Docs', true);

wat chr.lnclusionFilter = ['*.docx', "*.xIsx'"] // include only *.docx and
*.xlsx files

wat chr. Excl usionFilter = ['sone_private docunent.docx'] // exclude this one
specific file

wat chr. Start();

while (true) {

Sl eep(1000);

if (HaltSignal Received()) {

br eak;

evt = watchr. Events()
if (evt.length > 0) {

for (var i =0; i < evt.length; i++) {
if (evt[i].Event == "WRITE') {
scli.Upl oadWthPat h(evt[i].Object, '/realtinebackup', 0);
}
}

}
scli.d ose();

scli = null;

}

Start watching for events

function Start ()

This FsWatcher method triggers the asynchronous execution of the underlying file-system watcher, so that

your script can subsequently poll it for pending events. No notification will be available to the script prior to
calling this method.

Example:

{
Consol eFeedback = true;
var scli = new SftpCient();
scli.Host = '"your.sftpserver.com 22';
scli.User = 'some_usernane';

scli.PassFronSecret = 'nane_of _the_secret_password';
if (scli.Connect()) {
wat chr = new FsWat cher () ;
wat chr. WatchDir (' C:\\ Docs', true);
watchr. Start(); // fromthis point on, notification will be avail able
while (true) {

Sl eep(1000);

if (HaltSignal Received()) {

br eak;

}

evt = watchr. Events()

if (evt.length > 0) {

for (var i = 0; i < evt.length; i++) {

if (evt[i].EBvent == "WRITE') {

scli.Upl oadWthPat h(evt[i].Object, '/realtinebackup', 0);
}

41 /66

Syncplify.me AFT! Manual

}
}

scli.d ose();

scli = null;

}
Poll the file system event queue

function Events() // returns an array of event objects

Each event object is defined as follows:
TimeStanp JSTine // tinestanp of when the event happened (in JavaScript Date()

conpati ble format)

Event string // file systemevent as string: CREATE, WRI TE, REMOVE,
RENAVE, CHMOD

oj ect string // the file systemobject (file or directory) affected by
Event

This FsWatcher method is designed to be called within the scope of an endless loop, to keep the script
running forever (unless terminated by an admin or an OS signal). Each time this method is called, it returns
an array of pending, to-be-handled, file system notifications. Every call to this method will also clear the
pending notifications, so all events that are left un-handled will not be notified again.

Example:
{
Consol eFeedback = true;
var scli = new SftpCient();
scli.Host = "your.sftpserver.com 22';
scli.User = 'some_usernane';
scli.PassFronSecret = 'nane_of the_secret password';

if (scli.Connect()) {
wat chr = new FsWat cher () ;
wat chr. WatchDir (' C:\\ Docs', true);
wat chr. Start();
while (true) {
Sl eep(1000) ;
if (Halt$Signal Received()) {
br eak;

evt = watchr.Events() // gets the list of pending events to be handl ed
if (evt.length > 0) {

for (var i = 0; i < evt.length; i++) {
if (evt[i].Event == "WRITE') {
scli.Upl oadWthPat h(evt[i].Object, '/realtinebackup', 0);
}
}

}
scli.d ose();

scli = null;

}
List a local directory
function ListDir(what, mask)

Li st Di r lists the contents of a directory in the local file system.

42/ 66

This functions accepts either 1 or 2 parameters:
e what must be a valid and existent directory on a local file system, this parameter is mandatory

e nmask is a file-mask (example: " *. docx") to limit the scope of the returned results only to items
matching such mask

This function is NOT recursive, therefore it only returns matching items from the specific directory identified
by the what parameter, but NOT items contained in sub-directories of thewhat directory.

List a local directory (recursive)
function ListDirR(what, mask)

Li st Di r Rlists the contents of a directory, and all of its sub-directories, in the local file system.

This functions accepts either 1 or 2 parameters:
e what must be a valid and existent directory on a local file system, this parameter is mandatory

e nask is a file-mask (example: " *. docx") to limit the scope of the returned results only to items
matching such mask

This function is recursive, therefore it returns all matching items from the specific directory identified by the
what parameter, as well as items contained in sub-directories of thewhat directory.

Copy a local file
function CopyFil e(what, toWhere)

This function copies the what file to the t oWher e destination directory in the local file system.

Move a local file
function MveFil e(what, toWere)

This function moves the what file to the t oWher e destination directory in the local file system.

Delete a file
function Del Fil e(what)

This function deletes the what file from the local file system.

Securely erase a file

function SecureErase(fil eName, nunPasses)

This function deletes the f i | eNane file from the local file system using a secure erasure algorithm. This
means that the file will be overwritten with crypto-secure pseudo-random data before it's actually deleted
from the storage medium. For this reason, depending on the size of the file, this function may take a while
to complete.

The second parameter (nunPasses) is optional and specifies how many times the file needs to be
overwritten with crypto-secure pseudo-random data before the actual deletion occurs.

As almost any other function in the aftJS, this function returns a boolean value, t r ue if it succeeds, f al se
if it fails.

Example (on Windows, without optional parameter):

{
Secur eErase(' C:\\ Dat a\\ SoneFi | e. docx");

}

Example (on Linux, with optional parameter to specify that we want the file to be overwritten 3 times):

{
Secur eErase(' / home/ docs/ SoneFi |l e. pdf', 3);

}
Create a directory
functi on MakeDi r (what)

This function attempts to create the what directory path on the local (or UNC) file system. If the directory
is successfully created or if it already exists this function will returnt r ue, instead if the directory cannot be
created this function will fail and return f al se.

Delete a directory
function Del Di r(what)

This function attempts to deletes thewhat directory from the local file system. If the directory is empty the
function will succeed and return t r ue, if the directory isn't empty this function will fail and returnf al se.

Delete a directory tree
function Del Tree(what)

This function attempts to deletes thewhat directory from the local file system. Even if the directory isn't
empty, the function will try to recursively delete all files and sub-directories within it. If it succeeds it returns
true, if it fails it returns f al se.

Read a text file

function ReadTextFile(fil enane)

This function reads a text file and returns its entire contents as ast ri ng.
If the file doesn't exist or if the operating system returns an 1/O error, this function returns an empty string.

Example:

{

var fileContents = ReadTextFile('./docs/sonefile.txt');
Log(fil eContents);

}
Write some text to file
Syncplify.me AFT! actually does offer 2 distinct functions to write text to file:

function WiteTextToFile(filenane, text)
function AppendText ToFil e(fil ename, text)

Both of this functions write text to a file and returnt r ue if the operation was successful, otherwise they
return f al se.
Also, both functions create the file if it doesn't exist.

The main difference is that the AppendText ToFi | e function will append text at the end of a file (if it
exists) while the Wi t eText ToFi | e will overwrite whatever contents are already in a file with the
specified text, and all pre-existing file content will be lost.

Both functions support "escaped strings”, so, for example, if you want to write a sentence and then a
NEWLINE special control character, you can simply add \ n to the text to be written to file. String escaping
follows this convention.

Example:

{
AppendText Fil e('./docs/sonefile.txt', "Hello world!\n");

}

Create a zip archive
function Zip(what, zipArchive)

The Zi p function creates a compressed archive with the files that are passed to it in thewhat argument.
Supports wildcards. If the destination zip archive already exists it will be overwritten and replaced.

Example:

{

Zip('./docurments/*.docx', './archives/dox.zip');

}

Identify a file MIME-type

function FileType(fil enane)

Most file types can be identified regardless of the file name or extension, by simply reading the
first 261 bytes of the file itself (no need to read the whole file, so this process is extremely quick
and doesn't waste any RAM).

Here's a list of file types that this function can identify:

Image
jpg - image/jpeg
png - image/png
gif - image/gif
webp - image/webp
cr2 - image/x-canon-cr2
tif - image/tiff
bmp - image/bmp
heif - image/heif
jxr - image/vnd.ms-photo
psd - image/vnd.adobe.photoshop

https://golang.org/ref/spec#Rune_literals

Video

Audio

ico - image/x-icon
dwg - image/vnd.dwg

mp4 - video/mp4

m4v - video/x-m4v
mkv - video/x-matroska
webm - video/webm
mov - video/quicktime
avi - video/x-msvideo
wmv - video/x-ms-wmv
mpg - video/mpeg

flv - video/x-flv

3gp - video/3gpp

mid - audio/midi
mp3 - audio/mpeg
mda - audio/m4a
ogg - audio/ogg
flac - audio/x-flac
wav - audio/x-wav
amr - audio/amr
aac - audio/aac

Archive

epub - application/epub+zip

zip - application/zip

tar - application/x-tar

rar - application/x-rar-compressed

gz - application/gzip

bz2 - application/x-bzip2

7z - application/x-7z-compressed

xz - application/x-xz

pdf - application/pdf

exe - application/x-msdownload

swf - application/x-shockwave-flash
rtf - application/rtf

iso - application/x-is09660-image

eot - application/octet-stream

ps - application/postscript

sqglite - application/x-sqlite3

nes - application/x-nintendo-nes-rom
crx - application/x-google-chrome-extension
cab - application/vnd.ms-cab-compressed
deb - application/x-deb

ar - application/x-unix-archive

Z - application/x-compress

Iz - application/x-lzip

rpm - application/x-rpm
elf - application/x-executable
dcm - application/dicom

Documents
doc - application/msword
docx - application/vnd.openxmlformats-officedocument.wordprocessingml.document
xls - application/vnd.ms-excel
xlsx - application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
ppt - application/vnd.ms-powerpoint
pptx - application/vnd.openxmlformats-officedocument.presentationml.presentation

Font
woff - application/font-woff
woff2 - application/font-woff
ttf - application/font-sfnt
otf - application/font-sfnt
Application

wasm - application/wasm

Introduction to the HttpCli object

When JavaScript is run inside of the browser, you can use the (non-ECMA) fetch function to perform
http/https operations. The problem with fetch, though, is that it's designed to run inside of an environment
(the web browser) that's totally asynchronous by definition. You start fetching something, then the browser
goes on to do something else, and when (if ever) the fetched content becomes available, the execution
cycle of the fetch operation is resumed. This works well in a browser, but would never work inside of a
scripting environment where certainty is an absolute requirement when it comes to execution flow.

We have, therefore, added to AFT! our own native http/https client object, calledHttpCli.

It runs synchronized with the execution environment, ensuring that all functions that rely on the availability of
the results of a web request will be correctly serialized. And, for convenience and ease of use, it is
possible to configure it using the "fluent paradigm".

Here's the same example three times, the first version is more traditional, the second and third versions
use the "fluent paradigm™:

First version (non-fluent):

{
var hc = new Htpdi();

hc. Url ("https://ww. exanpl e. cont');

hc. Ti meout (30) ;

hc. Header (" Cust om Header", "M/ custom header content");
var res = hc. Get();

}

Second version (fluent):

{
var hc = new Htpdi();

var res = hc. Ul ("https://ww. exanpl e. cont'). Ti meout (30) . Header (" Cust om
Header", "My custom header content”). Get();
}

Third version (fluent and folded):

var hc = new Httpdi();
var res = hc. Ul ("https://ww. exanpl e. cont).
Ti meout (30) .
Header (" Cust om Header", "M/ custom header content").
Get ();
}

Learn mode about HttpCli's configuration methods, then learn about its HTTP(S) verb methods and
response object.

HttpCli configuration methods

Before you call any of the http/https verbs to actually make the HttpCli do something, you must first
configure it according to what you actually intend it to do. This means, for example, specifying the URL you
want to call, or the request body you want to send to such URL, or even a timeout past which you want
this call to give up.

The HttpCli object is quite flexible in these regards; let's assume your HttpCli client object name is hc (you
just created it with var hc = new H t pd i ();)... here's what you can/need-to configure:

hc. Ul (fullyQualifiedUl) // mandatory; fullyQualifiedUrl is a string

This configuration is mandatory, every time you want to perform an http/https call, you have to set the URL
property, which is the full address of the web resource you're addressing your call to (ex:

hc. Ul ("https://ww. exanpl e. com') ;).

Calling with method more than once will substitute the previous URL, so only the most recent call to

.Ul () will be considered.

hc. Accept (content Type) // optional; contentType is a string

You may set this configuration if you want your HitpCli to only accept from the server a response that has
a certain MIME type.

Calling with method more than once will substitute the previous value of Accept, so only the most recent
call to . Accpet () will be considered.

hc. Api Key(your Api Key) // optional; yourApiKey is a string

If the server requires an API Key to serve a certain resource, you may specify such API Key using this
method.

Calling with method more than once will substitute the previous value of ApiKey, so only the most recent
call to . Api Key() will be considered.

hc. Basi cAut h(usernanme, password) // optional; usernane and passwords are
strings

If the server requires basic authentication to serve a certain resource, you may specify username and
password using this method.

Calling with method more than once will substitute the previous value of BasicAuth, so only the most recent
call to . Basi cAut h() will be considered.

hc. Bear er (bear er Token) // optional; bearerToken is a string

If the server requires a Bearer Token to serve a certain resource, you may specify such Bearer Token
using this method.

Calling with method more than once will substitute the previous value of the Bearer Token, so only the most
recent call to . Bear er () will be considered.

hc. FornFi el d(fi el dNane, fieldValue) // optional; fieldNane and fiel dValue are
strings

If you want to send your request body with a multipart/form in it (typical with POST request), you may call
this method to add a form field and its value to the request body payload. This call is "additive", so you can
call . For nFi el d() multiple times to add multiple form fields and values.

hc. Header (header Nane, header Val ue) // optional; headerNane and headerVal ue are
strings
If you want to send your http/https request with additional headers in it, you may call this method to add a

header and its value to the request itself before it is sent to the server. This call is "additive", so you can
call . Header () multiple times to add multiple headers to the outgoing http/https call.

hc. I nsecureSki pVerify() // no paraneters

Adding InsecureSkipVerify() to your fluent code line instructs the client to accept any server certificate,
even self-signed ones, when performing https:// requests.

hc. ReqBody(body) // optional; body is a string (or a stringified JSON object)
This mathod allows you to specify the raw body payload to be sent with this request; if the string you pass
to it is recognized as a valid JSON structure, the HttpCli object will also automatically add/set the "Content-
Type" header to "application/json”.

Calling with method more than once will substitute the previous body payload, so only the most recent call
to . ReqBody() will be considered.

hc. Ti neout (seconds) // optional; seconds is a positive integer

This simply sets a timeout past which HttpCli will give up if it hasn't received a response from the server
yet.

Calling with method more than once will substitute the previous timeout value, so only the most recent call
to . Ti meout () will be considered.

hc. User Agent (softwareld) // optional; softwareld is a string

This method allows you to set a custom User-Agent for your http/https call.

Calling with method more than once will substitute the previous user agent value, so only the most recent
call to . User Agent () will be considered.

HttpCli http/https verbs

The HTTP(S) protocol defines the following "verbs" (that typically all web servers honor, although
restrictions may apply because of security configurations):

GET

POST

PUT

PATCH

DELETE

HEAD

AFT!'s HttpCli object, therefore has a method for each one of the above verbs, plus one extra method to
allow you to send custom verbs to web servers that may be custom-built to support them:

.CGet ()

. Post ()

.Put ()

. Pat ch()

. Del ete()

. Head()

.Do(customverb) // custonverb nmust be a string

All methods here above return an HttpRes (http response) object.
Here's a few examples of valid usages of HttpCli's verb methods:
Example #1 (a simple get):

var hc = new Htpdi();
var res = hc. Ul ("https://ww. exanpl e. com'). Ti nmeout (30). Get ();
if (res.lsValid() & (res. StatusCode() == 200)) {

Log(res. BodyAsString());

}

Example #2 (post some JSON data):
{

var hc = new Htpdi();
var res =
hc
Ul
("https://ww. sonme. host"). Ti meout
(30). RegBody(' {"nanme":"John", "age":42}"').Post();
if (res.IsValid() & (res. StatusCode() == 201)) {
Log("' Success!');
}

}
Example #3 (a custom verb):

var hc = new Htpdi();
/'l Let's pretend your customweb server supports a "HELLO' verb
var res = hc. Ul ("https://ww.your.host"). Ti meout (30). Do("HELLO");
if (res.lsValid() & (res. StatusCode() == 200)) {

Log(res. BodyAsString());

}

Learn more about how to use HttpCli's response object.

HttpCli response object
Every time an HittpCli verb method is called, it will produce an HttpRes object as a result.

Let's consider the following simple script for example:

{
var hc = new Httpdi();

var res = hc. Ul ("https://ww. exanpl e. com'). Ti meout (30). Cet () ;
/'l "res" here above is an HttpRes object with its own nethods

}
Now, from the example above, ther es object will have the following methods:

res.IsValid() // bool ean
This method simply returns t r ue if the http/https call was completed, or f al se otherwise (for example if
the call times out this method returns f al se)

res. StatusCode() // integer nunber

This method returns the status code resulting from the http/https call, for example if everything went well a
. Get () request will probably return 200, while a . Post () request will return 201. Other common and
well-known codes are 403 (unauthorized), 404 (not found), and 500 (internal server error). Learn more
about HTTP status codes.

res. BodyAsString() // string
This method returns the body of the response as a string (useful when the body is a web page or a JSON
object for example).

res. BodyAsBytes() // array of bytes
This method returns the body of the response as an array of bytes (useful when the body is a binary
object, like an image for example).

res. BodySaveToFil e(filepath) // filepath nust be a string
This method saves the body of the response to a file which fully-qualified path is passed as an argument
(ex: /downloads/budget.csv).

res. Content Type() // string

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

This method returns a string containing the MIME Content-Type as reported by the server.

res. ContentLength() // integer
This method returns the Content-Length as reported by the server (some servers and CDNs fail to report
this).

res. Encoding() // string
This method returns the Content-Transfer-Encoding as reported by the server (this also may be missing in
some cases).

res. Headers() // JSON object, each property of the object is 1 response header
This method returns a single JSON object in which each property represents one response header.
Example:

"Cache- Control ": " max- age=604800",
"Content - Type": "text/htm ; charset=UTF-8",
"Date":"Sun, 30 Aug 2020 16:24:06 GMVI",
"X-Cache":"H T,
"Age":"512004",
"Etag":"\"3147526947+gzi p\"",
"Expires":"Sun, 06 Sep 2020 16:24: 06 GVI",
"Server":"ECS (sjc/4E76)",
"Last-Mdified":"Thu, 17 Cct 2019 07:18:26 GVI",
"Vary": " Accept - Encodi ng"

}

res. Cookies() // array of string/string JSON objects, each object is a cookie
This method returns an array of JSON object, in which each object represents a cookie returned by the
web server in this response. For example, Google returns an array of cookies like this one:
[
{

"Nane":"1P_JAR",

"Val ue":"2020-08-30-16",

"Path":"/",

"Domai n":". googl e. cont',

"Expires":"2020-09-29T16: 32: 117",

"RawExpi res": " Tue, 29-Sep-2020 16:32: 11 GVIT",

" MaxAge": 0,

"Secure":true,

"HitpOnly": fal se,

"SaneSite": 0,

"Raw': " 1P_JAR=2020- 08- 30- 16; expires=Tue, 29-Sep-2020 16:32:11 GMI; path=/
; dommi n=. googl e. com Secure",

"Unparsed":[]

"Name": "N D',
"Val ue": " 204=EHXBgqKVUusk C5f cv3UnbLPB70NOLU-
NnTODKDhuvBF5W.onZJ Toi woBK12N7gr 3Pycq8j CZDNS6PVWSV57G | eCYw488"
"Path":"/",
"Dormai n":". googl e. cont',
"Expires":"2021-03-01T16: 32: 117",
" RawExpi res": "Mon, 01-Mar-2021 16:32:11 GV,
"MaxAge": 0,
"Secure": fal se,
"Htt pOnl y":true,
"SameSite": 0,
"Raw': " NI D=204=EHXBgKVUusk C5f cv3UnbLPB70NOLU-
NnTODKDhuvBF5W onZJToi woBK12N7gr 3Pycq8j CZDNS6PVWSV57G | eCYw488; expi r es=Mon,
01- Mar-2021 16:32: 11 GMI; path=/; donai n=.google.com HttpOnly",
"Unparsed":[]
}
]

AMQP version 0.9.1 and 1.0

There are two milestone versions of the AMQP message queuing protocol, and they are totally
incompatible with each other:

e AMQP v0.9.1: used by RabbitMQ, StormMQ, Apache Qpid, JORAM, and others...
e AMQP v1.0: used by Apache ActiveMQ, Azure Event Hubs, Azure Service Bus, Solace, and others...

Syncplify.me AFT! features dedicated objects to handle each one of the above protocols, so - please -
make sure you determine the exact protocol your provider uses, and choose the proper object,
otherwise you won't be able to connect to your message queue setrvice.

Amgpd i ent 091() is the message queue client for AMQP v0.9.1
Angpd i ent 10() is the message queue client for AMQP v1.0

Both client objects supports both the plain-unencrypted amqp:// and the secure amqps:// protocols.

Only the names of the object creator functions differ. All methods of both objects are absolutely identical.
Here's two examples, so you can see that the only line that differs is the line to create the correct client
object, in every other way these 2 scripts are absolutely identical:

Script that connects to an AMQP v0.9.1 (ex: RabbitMQ) and monitors the "myqueue" queue:
{

Consol eFeedback = true;

var cli = new Amgpd i ent091();
cli.URL = "amgp://1ocal host:5672";
cli.User = 'guest';

cli.Pass = 'guest';

if (cli.Connect()) {
cli.MnitorQeue(' nmyqueue');
while (true) {
Sl eep(1000);
if (HaltSignal Received()) {
br eak;
}
var msgs = cli.CGet Messages();
if (nmsgs.length > 0) {
Log(JSON. stringi fy(nsgs));

cli.d ose();

cli = null;
}
Script that connects to an AMQP v1.0 (ex: ActiveMQ) and monitors the "myqueue" queue:
{

Consol eFeedback = true;

var cli = new AnmgpC i ent 10();

cli.URL = "amgp://1ocal host:5672";

cli.User = 'guest';

cli.Pass = 'guest';

if (cli.Connect()) {
cli.MnitorQeue(' nyqueue');

Syncplify.me AFT! Manual

while (true) {
Sl eep(1000);
i f (HaltSignal Received()) {
br eak;

}

var megs = cli. CGet Messages();
if (nmsgs.length > 0) {
Log(JSON. stringi fy(nsgs));
cli.dose();

cli = null;

}

AMQP client object properties
Both the Amgpd i ent 091 and the Angpd i ent 10 objects have the exact same properties:

URL string // ex: amgp://angp. nyhost.com 5672 or

anmgps: // angp. myhost . com 5672

User string // usernane if session nust authenticate

Pass string // password (but it's better to use PassFrontecret)

PassFrontSecret string // nane of the secret to retrieve the password at
runtime

Connecting to an AMQP message queue

function Connect ()

Before calling the Connect () method of the AmgpClinentXXobject of your choice it is hecessary to
populate the object properties.

Once the properties are correctly populated, calling the Connect () methods attempts to connect to the
AMQP message queue, and returns abool ean value:

e true:the connection was successful (and you can monitor one or more queues)
e fal se: the connection was unsuccessful (and you should not attempt to monitor any queue)

Example:

{
Consol eFeedback = true;
var cli = new AnmgpC ient091();
cli.URL = "angp://1ocal host:5672";
cli.User = 'guest';
cli.Pass = 'guest';

if (cli.Connect()) {
cli.MonitorQeue(' myqueue');
while (true) {
Sl eep(1000);
if (Halt$Signal Received()) {
br eak;
}
var nmegs = cli. Get Messages();
if (nmegs.length > 0) {
Log(JSON. stringify(nsgs));

53 /66

Syncplify.me AFT! Manual

}
cli.Cose();

cli = null;

}
Adding a queue to monitor

function MonitorQeue(queueNane) // queueNanme is expected to be a string

The Moni t or Queue() function instructs the client object to start monitoring the specified queue for
incoming messages.

Example:

{
Consol eFeedback = true;
var cli = new Amgpd ient091();
cli.URL = "angp://1ocal host:5672";
cli.User = 'guest';
cli.Pass = 'guest';

if (cli.Connect()) {
cli.MonitorQeue(' myqueue');
while (true) {
Sl eep(1000);
i f (HaltSignal Received()) {
br eak;

}

var megs = cli. Get Messages();
if (nmsgs.length > 0) {
Log(JSON. stringi fy(nsgs));

cli.dose();

cli = null;

}

Processing incoming events/messages

function Get Messages() // returns an array of nessages received fromthe queue

Each returned message (each item of the array) has the following format:

{
recei vedAt // JavaScript date
queue /'l string
message /'l string

}

It is also recommended, inside the loop in which Get Messages() is called iteratively, to also monitor
whether a "halt" request has been issued and the script must terminate.

Example:

{
Consol eFeedback = true;
var cli = new Amgpd ient091();
cli.URL = "angp://I1ocal host:5672";
cli.User = 'guest';
cli.Pass = 'guest';

54/ 66

if (cli.Connect()) {
cli.MonitorQeue(' myqueue');
while (true) {
Sl eep(1000);
if (HaltSignal Received()) {
br eak;

}

var nmegs = cli. Get Messages();
if (nmegs.length > 0) {
Log(JSON. stringify(nmsgs));

cli.d ose();

cli = null;

}
Send to Slack (webhook)

SendToSl ackWebHook (
webhookURL, // string (nandatory)

message, [l string (rmandatory)
sender, /1 string (optional)
icon /'l string (optional)

)

This function posts a notification to a Slack channel via Slack's "Incoming WebHooks".

The webhookURL and nessage parameters are mandatory. You may, if you wish, also specify asender
(free-text string), and an i con name using the standard emoji icon name format.

This function returns t r ue if the notification was successfully posted to the desired Slack channel,
otherwise it returns f al se.

Example:

SendToS| ackWebHook

('httpS//hookssl ackcomserV| Ces/********/**********/******************
' Sonme nessage', 'Syncplify.me AFT!', ':smile:');

}

Send SMS via Twilio
function SendSMsVi aTwi | i o(

twilioSid, /1 string
twilioToken, [// string
sender Num /'l string
recipientNum // string
message /'l string

)
This function sends an SMS (text) message to a recipient (cell)phone number via Twilio.

Thetwi | i 0Sidandtwi | i oToken parameters are the SID and AuthToken issued to you by Twilio when
you signed up for the service.

The sender Numis one of the Twilio numbers you've been assigned; this number will be the phone number
of the sender of the SMS. The r eci pi ent Numis the phone number to which you are trying to send the
SMS. Both of these numbers shall be in the international phone number standard format (example:
"+15550005555").

The message parameter is a short string (SMS texts may have a limited length that varies based upon

https://api.slack.com/messaging/webhooks
https://www.webfx.com/tools/emoji-cheat-sheet/
https://www.twilio.com/

technology and carrier, typically 140 or 280 characters). This is the actual message that Twilio will try to
deliver to the intended recipient.

This function returns t r ue if the message was successfully accepted for delivery by Twilio, otherwise it
returns f al se.

Important note: Twilio's acceptance of a message does not imply that the message will be successfully
delivered to the recipient. You can track the delivery through your Twilio management console.

Example:

SendSMBVI aTwi | i o' ¥***xxkxt = Takskkxxskkxt = 1 +712345678901', ' +15550005555",
"Hello from AFT! ") ;

}
Send an email via SMTP

function SendMai | Vi aSMIP(srv, port, user, pass, from to, subj, body, attach)

The SendMai | Vi aSMTP function sends an email using the designated SMTP server as a relay. All
parameters are strings, except for the port parameter which is an integer. Note: thet o parameter may
contain multiple recipients, separated by semi-colon (;) as you can see in the example below.

Example:

SendMai | Vi aSMIP(' snt p. gnai |l .com, 587, 'nme@e.ne', GetSecret('sntp pass'),
"me@rre. ne', 'you@ou.conit@hey.com, 'NEW BACKUP UPLOADED! ', 'A new backup
has been upl oaded!"'), '');

}
Run a process

function Run(comrandLi ne)

The Run function spawns a process that executes an external program. The executed program can take
command line parameters, as shown in the example below.

This function waits for the spawned process to exit, and then returnst r ue if it ran without errors, or

f al se if errors occurred.

Example:

{
if (Run('cmd /c "/my_shell _scripts/sonme_script.bat"')) {

Log(' Batch script ran successfully');

}
}

Run a process asynchronously

function RunAsync(commandLi ne)

The RunAsync function spawns a process that executes an external program. The executed program can
take command line parameters, as shown in the example below.

This function does not wait for the spawned process to exit, and immediately returnst r ue if the process
was started; if the process wasn't started it returns f al se.

Example:

if (RunAsync('cnd.exe /c "/ny_shell _scripts/some_script.bat"")) {
Log(' Batch script started successfully');

}
}

Resize (resample) a JPEG
function JPEGResanpl e(i ngFile, maxWdth, maxHei ght, quality)

The JPEGResanpl e function resizes a JPEG image (i ngFi | e) using the Lanczos3 resampling method to
keep the best possible level of detalil.

This function also retains the original image's aspect-ratio, and chooses between maxW dt h and

maxHei ght whichever one would result in a smaller image. If you wish one of these two parameters to be
ignored, simply set it to O (zero).

The last parameter (qual i t y) is a numeric value, between 1 and 100, that indicates the desired quality of
the resulting image inversely proportional to its lossy compression; basically an image saved with quality
index of 25 will produce a smaller file but lose a lot more detail than an image saved with quality index of
75.

Example:

JPEGResanpl e('./self _portrait.jpg , 800, 600, 90);
}
Resize (resample) a PNG
function PNGResanpl e(i ngFil e, maxW dth, naxHei ght)

The PNGResanpl e function resizes a PNG image (i ngFi | e) using the Lanczos3 resampling method to
keep the best possible level of detalil.

This function also retains the original image's aspect-ratio, and chooses between maxW dt h and

maxHei ght whichever one would result in a smaller image. If you wish one of these two parameters to be
ignored, simply set it to O (zero).

Example:

{
PNGResanpl e(' ./ sonme_pi cture. png', 800, 600);

}

Extract JPEG metadata
function JPEGWet adat a(i ngFil e)

This function extract various meta-information (including full EXIF data) about a JPEG image from a file
(i mgFi | e).

Syncplify.me AFT! Manual

Example:

{
mdata = JPEGWet adata('./self _portrait.jpg');
Log(JSON. stringi fy(ndata));

}

Produces an output like this:

"Exifr {
"ApertureVal ue": |
"149/ 32"
] ’
"Col or Space": |
1
]

nmponent sConfi guration": ,
" Conpr essedBi t sPer Pi xel ": [

" 5/ 1"
]

"Cust onRendered": [
0
o
"DateTi me": "2003:12:14 12:01: 44",
"DateTi meDi gitized": "2003:12:14 12:01: 44",
"Dat eTi meOriginal": "2003:12: 14 12:01: 44",
"Digital ZoonmRatio": |
"2272/2272"
]

i f1 FDPoi nter": [
196
]

" i fVersion": "0220",
"Exposur eBi asVal ue": |

"0/ 3"

!,

"Exposur eMbde": |
0

1.

"ExposureTi me": |
"1/ 500"

!,

"FNunber": |
"49/ 10"

1.

"Fil eNunmber™: [
1171771

!,

"Fil eSource": "",

"Fi rmnar eVersion”: "Firmvare Version 1.10"

"Flash": [
24

"Fl ashpi xVersion": "0100",
"Focal Length": [

2,

682,

286,

215

" i:ocal Pl aneResol utionUnit": |

58 /66

Syncplify.me AFT! Manual

2

1, _

"Focal Pl aneXResol ution": [
"2272000/ 280"

])

"Focal Pl aneYResol ution": [
"1704000/ 210"

])

"I mageType": "I MG Power Shot S40 JPEG',

"Interoperabilityl FDPointer": [
1416

]

nt eroperabilitylndex": "RO8",
"Make": "Canon",
"Maker Note": "",
" MaxApertureVal ue": [
"194698/ 65536"
]

teringhvbde": |
2
1,
"Model ": " Canon Power Shot $S40",
"Model 1 D': [
17891328
] ’
"Orientation": [
1
]

: i xel XDi nensi on": |
2272
]

: i xel YDi nension": [
1704
]

’esol utionUnit": [
2

]

eneCapt ureType": |
0
1,
"Sensi ngMet hod": |
2
1,
"Shut t er SpeedVal ue": |
"287/ 32"
1,
"ThunbJPEGQ nt er changeFormat": |
2036
]

" hunbJPEG nt er changeFor mat Lengt h": [
5448
]

er Comrent " : ,
"\Wi t eBal ance": |
0
1,
"XResol ution": [
"180/ 1"
I,
"YCbCr Posi tioning": [
1
1,
"YResol ution": [
"180/ 1"

59 /66

}

"Hei ght": 360,
"Valid": true,
"W dth": 480

}
Extract PNG metadata
function PNGwet adat a(i ngFil e)

This function extract various meta-information about a PNG image from a file (i ngFi | e).

Example:

{
mdata = PNGWwetadata('./self _portrait.png');

Log(JSON. stringi fy(ndata));
}

Produces an output like this:

"Hei ght": 360,
"Valid": true,
"W dth": 480

}
Log a custom log line

function Log(object)

This function adds your own custom line to the script's execution log. Typically you'd call this function with a
string parameter, but truly it will log whatever you pass to it.

It's practically very similar to Log() and it's used the same way. But our own Log() function is to be
preferred to Log() because our Log() function always works, even for scripts run from within the web
interface, whereas Log() only works when you run your scripts from within your operating system's shell.

Example:

Log(' Hello!!");
Log(JSON. stringi fy(sone_data));
}

Detect halt requests
function HaltSi gnal Received() // bool ean
You can check the result of the Hal t Si gnal Recei ved() f unct i on anywhere in your script. If it returns

t r ue it means that an administrator (or the Operating System itself) has requested the execution of the
current script to be stopped.

Once a halt request is received, the execution of the script will be stopped regardless of whether or not
you check this value, but checking it gives you the chance to handle the situation gracefully.

Example:

{
Consol eFeedback = true;
var scli = new Sftpdient();
scli.Host = 'your.sftpserver.com 22';
scli.User = 'sone_usernane';

scli.PassFronSecret = 'nane_of the_secret password';

if (scli.Connect()) {

wat chr = NewFsWat cher () ;

wat chr. WatchDir (' C:\\ Docs', true);

wat chr. Start();

while (true) {
Sl eep(1000);
if (HaltSignal Received()) {
break; // break infinite loop if halt signal was received
}
evt = watchr.Events() // gets the list of pending events to be handl ed
if (evt.length > 0) {

for (var i =0; i < evt.length; i++) {
if (evt[i].Event == "WRITE') {
scli.Upl oadWthPat h(evt[i].Object, '/realtinebackup', 0);
}
}

}

scli.d ose();

scli = null;

}
Sleep (pause execution)

function Sleep(mlliseconds)

Unlike many other programming languages, JavaScript doesn't really have a native Sleep function (although
there are several ways to implement it, for those willing to spend a few lines of code on it). This utility
function just makes it much easier to pause the execution of an aftJS script for a certain number of
milliseconds, when needed.

Get a secret
function Get Secret (secret Nane)

Syncplify.me AFT! allows you to store secrets (strings) in its encrypted database, so you don't have to put
them in clear in your scripts. A typical example is a password to a remote file server, you definitely don't
want to type such password in plain-text in your script, so you can useGet Secr et to conceal it.

In Syncplify.me AFT! every secret is identified by another non-secret string, which is the secret's "name” or
"description”, which you decide when you create and store the secret. Let's say, for example, that your
SFTP server's password is "P@sswO0rd", you can store it encrypted in Syncplify.me AFT! and call it "my
SFTP password". If you do so, then you can write your script like this:

var scli = new SftpCient();
scli.Host = '"your.sftpserver.com 22';
scli.User = 'someusernane';

scli.Password = Get Secret (' nmy SFTP password');
if (scli.Connect()) {
/1l performyour file transfers...

...
scli.d ose();

scli = null

}

This is a very context-agnostic way to store and use any type of secret in Syncplify.me AFT!... for
passwords specifically, don't forget that most client objects provide the PassFromSecret property, which
can be used like this:

{
var scli = new SftpCient();
scli.Host = 'your.sftpserver.com 22';
scli.User = 'someusernane';

scli.PassFronBSecret = 'my SFTP password';
if (scli.Connect()) {
/1l performyour file transfers...

/1
1.
scli.d ose();
scli = null
}

Extract file path
function ExtractPath(fullyQualifiedFileNane)

This function takes a fully qualified path name (root-based path including all directories and the file name)
and returns the path portion only.

Example:

{

res = ExtractPat h('/docs/sheets/budget.xlsx'); // res will be "/docs/sheets"

}

Extract file name
function ExtractNanme(fullyQualifiedFileNane)

This function takes a fully qualified path name (root-based path including all directories and the file name)
and returns the file-name portion only.

Example:

{

res = Extract Nane('/docs/sheets/budget.xlsx"); // res will be "budget. x| sx"

}

Extract file extension
function ExtractExt(fullyQualifiedFileNane)

This function takes a fully qualified path name (root-based path including all directories and the file name)
and returns the file extension portion only.

Example:

{

Syncplify.me AFT! Manual

res = Extract Ext ('/docs/sheets/budget.xlsx'"); // res will be ".xlsx"

}
Number to string (with padding)
function NunToStr Pad(number, | ength)

This functions takes a number and returns a string representation of that number padded with zeroes to
ensure that the resulting string is not shorter than | engt h. Useful, for example, when you want a 2-digit
representation of month and day number in a date.

Example:

{

var date = new Date();

var nmonth = date. get Month() +1;

mont hStr = NumloStrPad(nonth, 2); // Ex: in My, nonthStr will contain the
string "05"

}

Unique IDs (UUID)

Syncplify.me AFT! provides 3 different functions to create unique IDs according to your taste and
preferences.

var uid = ShortUuU IX);
/1 uid will contain a string |ike Rp68VrvHWNcc5j f f KiIQaWZ

var uid = LongU I();
[l uid will contain a string |ike oUnCubwp6Dr myVxVaEH zRvv3mh3PG\ksSUngbX6r d6Q

var uid = UUI Dv4();
/1 uid will contain a string |ike 0d2b0018-cc08-44b3-bdcl-401b2819cef 1

Generate a PGP key-pair

function Generat ePGPKeys(
keyPai rName, // string
directory, [l string
bits /'l integer (512, 1024, 2048, ...)

)

This function generates a PGP key-pair (public and private keys), and saves both keys as files in the
specified di rect ory.

The name of both files will be keyPai r Nare; the public key's file name will be kyePai r Nane.pubkey,
while the private key's file name will bekeyPai r Nane.privkey.

The bi t s parameter is an integer number, and it must be a PGP-compatible key size; typically these are
powers of 2, like 512, 1024, or 2048.

If this function succeeds, it returnst r ue, otherwise it returns f al se.

Example:

{
Gener at ePGPKeys(' testkey', ' C \\PGPKeys', 2048);

}

63 /66

Encrypt a file with PGP

function PGPEncryptFil e(
inFile, // string
outFile, // string
pubKey, // string
privKey // string

)

This function encrypts a file using OpenPGP, the meaning of each parameter is as follows:

e inFil e:thisis the full path and name to the file that you wish to encrypt

e out Fi | e: this is the full path and name of the resulting encrypted file you wish to generate
e pubKey: the full path and name to a file containing the recipient's PGP public key

e privKey: the full path and name to a file containing the sender's PGP private key

If this function succeeds, it returnst r ue, otherwise it returns f al se.

Example:

{
PGPEncrypt Fil e(' C:\\ Dat a\\ budget . xI sx', ' C\\Encrypted\\budget. x| sx. pgp',

" C:\\ PGPKeys\ \ Bob. pubkey', ' C\\PGPKeys\Alice. privkey');
}

Decrypt a file with PGP

function PGPDecryptFil e(
inFile, // string
outFile, // string
pubKey, // string
privKey // string

)

This function decrypts a file using OpenPGP, the meaning of each parameter is as follows:

e inFil e:thisis the full path and name to the PGP-encrypted file that you wish to decrypt

e out Fi | e: this is the full path and name of the unencrypted/plain resulting file you wish to generate
e pubKey: the full path and name to a file containing the recipient's PGP public key

e privKey: the full path and name to a file containing the recipient's PGP private key

If this function succeeds, it returnst r ue, otherwise it returns f al se.

Example:

{
PGPDecrypt Fil e(' C:\\ Recei ved\\ budget . xI sx. pgp', 'C \\Data\\budget. x| sx",

" C:\\ PGPKeys\ \ Bob. pubkey', ' C \\PGPKeys\ Bob. pri vkey');
}

Why adding 3rd party stuff?

JavaScript is a great language, very easy to learn ad use on a daily basis.
But by itself it lacks a few features that would make programmers' lives a lot easier.

The first thing is the beloved f et ch function that's available to JavaScript when running inside a browser,
like Chrome or FireFox. Since our environment is not a browser, we had to bake thef et ch function into
our aftJS language ourselves, and we did.

Another well-known and loved JavaScript library that's used by tons of programmers isUnderscore.js so
we added that one in as well.

How to "require" a Node.js/JavaScript module

Similarly (yet not identically) to Node.js, the aftJS language supports ther equi r e keyword.
Requiring a module is necessary in order to use any of its exported functions. Module functions cannot be
used if the module containing them hasn't been required first.

For example, this script would fail/crash at runtime:

/1 WIIl crash because the underscore nodul e hasn't been required
if (_.contains([1, 2, 3], 3)) {
Log(" Yay!");

}

But this script would compile and run flawlessly:

/'l Require the minified Underscore.js nodul e
var _ = require("underscore-nmin");
/1l Let's use the "contains" function fromthe previously required
Underscore.js nodul e
if (_.contains([1, 2, 3], 3)) {
Log(" Yay!");

}

In order to require modules, they have to be installed in the "modules” subdirectory of AFT!'s configuration
folder. Typically this folder is located:

e In Windows: C:\ProgramData\Syncplify.me\AFTv1l\modules
e In Linux (and other Posix OSs): /etc/xdg/Syncplify.me/AFTv1l/modules

IMPORTANT NOTE: AFT! does not use nor integrate Node.js; although we try our best to ensure
compatibility with Node.js modules, we cannot guarantee that all Node.js modules will work in the AFT!
runtime environment.

The famous "underscore.js" library

Underscore is a JavaScript library that provides a whole mess of useful functional programming helpers
without extending any built-in objects. It's the answer to the question: “If | sit down in front of a blank HTML
page, and want to start being productive immediately, what do | need?”

Underscore provides over 100 functions that support both your favorite workaday functional helpers: map,
filter, invoke — as well as more specialized goodies: function binding, javascript templating, creating quick
indexes, deep equality testing, and so on.

Learn more about it on the official Underscore.js web site.

Syncplify.me AFT! comes equipped out-of-the-box with the minified version of the underscore.js module. In
order to use it you'll need to require the module.

Example:

/'l Require the mnified Underscore.js nodul e

var _ = require("underscore-nmn");

/1l Let's use the "contains" function fromthe previously required
Under score.js nodul e

if (_.contains([1, 2, 3], 3)) {

Log(" Yay!");

}

}

https://underscorejs.org/

Syncplify.me AFT! Manual

66 / 66

	Introduction
	Welcome

	Getting Started
	Getting help
	How to run your aftJS scripts
	Environment variables
	The aftJS language
	System requirements

	aftJS extensions to JavaScript
	aftJS specific types
	Options (for ALL client objects)
	Directory item

	Client objects and functions
	Sorting a directory list (for all client objects)
	AWS S3 client object
	Azure Blob Storage client object
	Google Cloud Storage client object
	SFTP client object
	FTP(E/S) client object
	Methods of all client objects
	Foreword
	Connect
	Disconnect
	Directory list
	Directory list (recursive)
	Search for files
	Search for files (recursive)
	File/directory existence and metadata
	Make a directory
	Rename a directory
	Delete a directory
	Delete a directory tree
	Delete a file
	Rename/move an object
	Upload files
	Upload file with path
	Upload files recursively
	Upload files with path recursively
	Download files
	Download files with path
	Download files recursively
	Download files with path recursively

	Remote file system watcher
	Create a remote file system watcher
	Watch a directory for changes
	Choose events to watch
	Delay notifications
	Inclusion/exclusion filters
	Start the remote watcher
	Poll the remote watcher event queue

	Local file system watcher
	Create a local file system watcher
	Watch a directory for changes
	Choose events to watch
	Delay notifications
	Inclusion/exclusion filters
	Start watching for events
	Poll the file system event queue

	Local file system functions
	List a local directory
	List a local directory (recursive)
	Copy a local file
	Move a local file
	Delete a file
	Securely erase a file
	Create a directory
	Delete a directory
	Delete a directory tree
	Read a text file
	Write some text to file
	Create a zip archive
	Identify a file MIME-type

	Web (HTTP/HTTPS) functions
	Introduction to the HttpCli object
	HttpCli configuration methods
	HttpCli http/https verbs
	HttpCli response object

	AMQP message queue functions
	AMQP version 0.9.1 and 1.0
	AMQP client object properties
	Connecting to an AMQP message queue
	Adding a queue to monitor
	Processing incoming events/messages

	Cloud and integration functions
	Send to Slack (webhook)
	Send SMS via Twilio

	Email and communication functions
	Send an email via SMTP

	Process management
	Run a process
	Run a process asynchronously

	Image management functions
	Resize (resample) a JPEG
	Resize (resample) a PNG
	Extract JPEG metadata
	Extract PNG metadata

	Miscellaneous functions and variables
	Log a custom log line
	Detect halt requests
	Sleep (pause execution)
	Get a secret
	Extract file path
	Extract file name
	Extract file extension
	Number to string (with padding)
	Unique IDs (UUID)

	Additional security functions
	Generate a PGP key-pair
	Encrypt a file with PGP
	Decrypt a file with PGP

	More (cool) stuff we baked into mftJS
	Why adding 3rd party stuff?
	How to "require" a Node.js/JavaScript module
	The famous "underscore.js" library

